• Title/Summary/Keyword: Herb-Drug Interactions

Search Result 29, Processing Time 0.029 seconds

Interactions between herbal medicines and synthetic antihypertensive drugs (단미 한약과 합성 혈압약의 상호작용)

  • Oh, Yoona;Lee, Hongbum;Kim, Hyungwoo
    • The Korea Journal of Herbology
    • /
    • v.33 no.6
    • /
    • pp.9-18
    • /
    • 2018
  • Objective : Many patients take antihypertensive drugs as well as herbal medicines at the same time in order to treat other symptoms or to keep their well-being. In this study, interactions between herbal medicines and synthetic antihypertensive drugs were analyzed. Methods : To investigate the interaction between herbal medicines and synthetic antihypertensive drugs, three electronic databases, including OASIS, Mediline and Sciencedirect were searched. Experimental and clinical studies on the interaction between herbal medicines and antihypertensive drugs were independently reviewed and included. Results : Analyzing selected studies, twenty herbs were found to interact with antihypertensive drugs. Herbs found to increase the antihypertensive effect were Panax ginseng, Carthamus tinctorius, Magnolia officinalis, Silybum marianum, Scutellaria baicalensis, Schisandra chinensis, Sophora flavescens, Piper nigrum, Curcuma longa, Ginkgo biloba, Juncus effuses and Hydrastis canadensis. In contrast, Commiphora myrrha, Rhodiola rosea, Hypericum perforatum, Eurycoma longifolia, and Daturae metel were found to inhibit the antihypertensive effect. Stephania tetrandra could increase or decrease the effect depending on the type of antihypertensive drug. Epedria sínica was suspected of pharmacodynamic interaction with antihypertensive drug. Glycyrrhiza uralensis has been reported to have serious side effects in combination with antihypertensive drugs. Conclusion : These results imply that when used in combination with herbal medicines and synthetic antihypertensive drugs, proper doses and herbs which are to avoid need to be informed to the patients. Despite concerns about interactions between herbal medicines and synthetic drugs, related research is very limited. More systematic researches are needed to give information on patient safety as well as to guide clinical practice.

Evaluation of the inhibitory effect of Gynostemma pentaphyllum extracts on CYP450 enzyme activities using LC-MS/MS

  • Jun Sang Yu;Young Seok Ji;So Young Jo;Xiang-Lan Piao;Hye Hyun Yoo
    • Mass Spectrometry Letters
    • /
    • v.14 no.3
    • /
    • pp.116-119
    • /
    • 2023
  • Gynostemma pentaphyllum (Thunb.) Makino extract, a natural product with a history of traditional use, has gained attention for its potential health benefits. This study aimed to investigate its effects on key cytochrome P450 (CYP) enzymes using LC-MS/MS. Human liver microsomes and cDNA-expressed CYP2C8, CYP2C9, CYP2C19, and CYP3A4 supersomes were employed. Enzyme activity was assessed based on the formation of CYP-specific marker metabolites. The resulting data showed that the extract exhibited inhibitory effects on CYP2C8, CYP2C9, CYP2C19, and CYP3A4. Thus, G. pentaphyllum extract may influence the pharmacokinetics of drugs metabolized by CYP2C8, CYP2C9, CYP2C19, and CYP3A4. These findings emphasize the importance of considering potential herb-drug interactions when incorporating this extract into therapeutic regimens or dietary supplements.

Pharmacological potential of ginseng and its major component ginsenosides

  • Ratan, Zubair Ahmed;Haidere, Mohammad Faisal;Hong, Yo Han;Park, Sang Hee;Lee, Jeong-Oog;Lee, Jongsung;Cho, Jae Youl
    • Journal of Ginseng Research
    • /
    • v.45 no.2
    • /
    • pp.199-210
    • /
    • 2021
  • Ginseng has been used as a traditional herb in Asian countries for thousands of years. It contains a large number of active ingredients including steroidal saponins, protopanaxadiols, and protopanaxatriols, collectively known as ginsenosides. In the last few decades, the antioxidative and anticancer effects of ginseng, in addition to its effects on improving immunity, energy and sexuality, and combating cardiovascular diseases, diabetes mellitus, and neurological diseases, have been studied in both basic and clinical research. Ginseng could be a valuable resource for future drug development; however, further higher quality evidence is required. Moreover, ginseng may have drug interactions although the available evidence suggests it is a relatively safe product. This article reviews the bioactive compounds, global distribution, and therapeutic potential of plants in the genus Panax.

Sub-acute toxicity and effect of Hwangryunhaedok-tang on human drug-metabolizing enzymes

  • Jin, Seong Eun;Lee, Mee-Young;Seo, Chang-Seob;Shin, Hyeun-Kyoo;Cho, Jae-Woo;Ha, Hyekyung
    • The Journal of Korean Medicine
    • /
    • v.38 no.2
    • /
    • pp.15-30
    • /
    • 2017
  • Objectives: Hwangryunhaedok-tang (HHT; Huanglianjiedu-tang, Orengedoku-to), a traditional herbal formula, is used for treating inflammation, hypertension, gastritis, liver dysfunction, cerebrovascular diseases, dermatitis and dementia. The objective of this study was to assess the sub-acute toxicity of HHT in Sprague-Dawley (SD) rats, and its effect on the activities of human microsomal cytochrome P450s (CYP450s) and UDP-glucuronosyltransferases (UGTs). Methods: Male and female SD rats were orally administered HHT once daily at doses of 0, 500, 1000 and 2000 mg/kg for 4 weeks. We analyzed mortality, clinical observations, body weight, food consumption, organ weights, urinalysis, hematology, serum biochemistry, and histopathology. The activities of major human CYP450s (CYP1A2, CYP3A4, CYP2B6, CYP2C9, CYP2C19, CYP2D6, and CYP2E1) and UGTs (UGT1A1, UGT1A4, and UGT2B7) were assessed using in vitro fluorescence- and luminescence-based enzyme assays, respectively. Results: No toxicologically significant changes related to the repeated administration of HHT were observed in both male and female SD rats. The no observed adverse effect level (NOAEL) value was more than 2000 mg/kg/day for both sexes. HHT inhibited the activities of human microsomal CYP1A2, CYP2C19, CYP2D6, and CYP2E1, whereas it weakly inhibited the activities of CYP2B6, CYP2C9, CYP3A4, and UGT1A1. In addition, HHT negligibly inhibited the activities of human microsomal UGT1A4 and UGT2B7 with $IC_{50}$ values in excess of $1000{\mu}g/mL$. Conclusions: Our findings indicate that HHT may be safe for repeated administration up to 4 weeks. In addition, these findings provide information on the safety and effectiveness of HHT when co-administered with conventional drugs.

Effect of Allium sativum on cytochrome P450 and possible drug interactions

  • Janil, Ashutosh;Mehta, Anita A
    • Advances in Traditional Medicine
    • /
    • v.6 no.4
    • /
    • pp.274-285
    • /
    • 2006
  • Allium sativum (Family Amaryllidaceae or Liliaceae) is used worldwide for various clinical uses like hypertension, cholesterol lowering effect, antiplatelets and fibrinolytic activity etc. Due to these common house hold uses of Allium sativum, as a herbal supplements, and failure of patients to inform their physician of the over-the-counter supplements they consume leads to drugnutrient interactions with components in herbal supplements. Today these types of interactions between a herbal supplement and clinically prescribed drugs are an increasing concern. In vitro studies indicated that garlic constituents modulated various CYP (cytochrome P450) enzymes. CYP 3A4 is abundantly present in human liver and small intestine and contributes to the metabolism of more than 50% of commonly used drugs including nifedipine, cyclosporine, erythromycin, midazolam, alprazolam, and triazolam. Extracts from fresh and aged garlic inhibited CYP 3A4 in human liver microsomes. The in vivo effects of garlic constituents are found to be species depended and the dosing regimen of garlic constituents appeared to influence the modulation of various CYP isoforms. Studies have indicated that the inhibition of various CYPs by organosulfur compounds from garlic was related to their structure also. Studies using in vitro, in vivo, animal and human models have indicated that various garlic constituents can be the substrates, inhibitors and or inducers of various CYP enzymes. The modulation of CYP enzyme activity and expression are dependent on the type and chemical structure of garlic constituents, dose regime, animal species and tissue, and source of garlic thus this review throws light on the possible herb drug interaction with the use of garlic.

ADR of Herbal Medicines (한약물의 ADR)

  • Ko Seong-Gyu;Jang Byoung Eun;Choi Jae Sun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.18 no.4
    • /
    • pp.957-964
    • /
    • 2004
  • Herbal medicines are increasingly used to treat various diseases and lots of studies have been reported that they had benefits in treating and preventing of diseases. But organic toxicity is increasingly recognized as herbal medicines become more popular in industrialized countries. Some herbal products potentially benefit people with lots of diseases, however these benefits remain generally unproved in humans, and a greater awareness for potential adverse effects is required. A herb containing a wide variety of, mostly unknown, substances may well include some with unwanted effects. This review focuses on emerging organic toxicities that have been observed associated with various herbal preparations involving the liver, kidney, and heart, and patterns of organ injury, potential risk factors for organic toxicities. In addition to the potential for organic toxicities, drug drug interactions between herbal medicines and conventional agents may affect the efficacy and safety of concurrent medical therapy. Appropriate reporting and regulatory system to monitor herbal toxicity are required, in conjunction with ongoing scientific evaluation of the potential benefits of phytotherapy.

Inhibition of Cytochrome P450 by Propolis in Human Liver Microsomes

  • Ryu, Chang Seon;Oh, Soo Jin;Oh, Jung Min;Lee, Ji-Yoon;Lee, Sang Yoon;Chae, Jung-woo;Kwon, Kwang-il;Kim, Sang Kyum
    • Toxicological Research
    • /
    • v.32 no.3
    • /
    • pp.207-213
    • /
    • 2016
  • Although propolis is one of the most popular functional foods for human health, there have been no comprehensive studies of herb-drug interactions through cytochrome P450 (CYP) inhibition. The purpose of this study was to determine the inhibitory effects of propolis on the activities of CYP1A2, 2A6, 2B6, 2C9, 2C19, 2D6, 2E1 and 3A4 using pooled human liver microsomes (HLMs). Propolis inhibited CYP1A2, CYP2E1 and CYP2C19 with an $IC_{50}$ value of 6.9, 16.8, and $43.1{\mu}g/mL$, respectively, whereas CYP2A6, 2B6, 2C9, 2D6, and 3A4 were unaffected. Based on half-maximal inhibitory concentration shifts between microsomes incubated with and without nicotinamide adenine dinucleotide phosphate, propolis-induced CYP1A2, CYP2C19, and CYP2E1 inhibition was metabolism-independent. To evaluate the interaction potential between propolis and therapeutic drugs, the effects of propolis on metabolism of duloxetine, a serotonin-norepinephrine reuptake inhibitor, were determined in HLMs. CYP1A2 and CYP2D6 are involved in hydroxylation of duloxetine to 4-hydroxy duloxetine, the major metabolite, which was decreased following propolis addition in HLMs. These results raise the possibility of interactions between propolis and therapeutic drugs metabolized by CYP1A2.

Inhibitory Effects of 12 Ginsenosides on the Activities of Seven Cytochromes P450 in Human Liver Microsomes

  • Jo, Jung Jae;Shrestha, Riya;Lee, Sangkyu
    • Mass Spectrometry Letters
    • /
    • v.7 no.4
    • /
    • pp.106-110
    • /
    • 2016
  • Ginseng, a traditional herbal drug, has been used in Eastern Asia for more than 2000 years. Various ginsenosides, which are the major bioactive components of ginseng products, have been shown to exert numerous beneficial effects on the human body when co-administered with drugs. However, this may give rise to ginsenoside-drug interactions, which is an important research consideration. In this study, acassette assay was performed the inhibitory effects of 12 ginsenosides on seven cytochrome P450 (CYP) isoforms in human liver microsomes (HLMs) using LC-MS/MS to predict the herb-drug interaction. After incubation of the 12 ginsenosides with seven cocktail CYP probes, the generated specific metabolites were quantified by LC-MS/MS to determine their activities. Ginsenoside Rb1 and F2 showed strong selective inhibitory effect on CYP2C9-catalyzed diclofenac 4'-hydroxylation and CYP2B6-catalyzed bupropion hydroxylation, respectively. Ginsenosides Rd showed weak inhibitory effect on the activities of CYP2B6, 2C9, 2C19, 2D6, 3A4, and compound K, while ginsenoside Rg3 showed weak inhibitory effects on CYP2B6. Other ginsenosides, Rc, Rf, Rg1, Rh1, Rf, and Re did not show significant inhibitory effects on the activities of the seven CYPs in HLM. Owing to the poor absorption of ginsenosides after oral administration in vivo, ginsenosides may not have significant side effects caused by interaction with other drugs.

Review of Network Pharmacological Approaches on Korean Medicine (네크워크 약리학적 방법론을 활용한 한의학 효능 연구 고찰)

  • Beck, Jong Min;Seo, Han Kil;Kwon, Young Kyu
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.30 no.6
    • /
    • pp.419-425
    • /
    • 2016
  • This study analyzed research methodologies based on network pharmacology to build a new system architecture optimized for Korean Medicine research. Results form studies using network pharmacology were collected and analyzed to evaluate the strength and weakness. Finally, an improved system architecture was proposed. Whether the predicted effects of drugs or herbs from network pharmacological analyses were in agreement with those from conventioanl knowledge of Korean Medicine was evaluated. These results were used to verify the applicability of research methodologies to the modern pharmacology and Korean Medicine respectively. Eighteen papers using TCMSP were collected and analyzed. The results suggest that the research methodology based on network pharmacology is appropriate only for the modern pharmacology but not for Korean Medicine. Information about compound-compound, herb-herb and drug-compound interactions need to be considered. We propose the modified system architecture with those information.

Effects of Yuldahanso-tang and Chungsimyonja-tang on Cytochrome P450 Activities (열다한소탕과 청심연자탕의 Cytochrome P450 활성 연구)

  • Jin, Seong-Eun;Ha, Hye-Kyung;Shin, Hyeun-Kyoo
    • Journal of Sasang Constitutional Medicine
    • /
    • v.24 no.4
    • /
    • pp.84-91
    • /
    • 2012
  • Objectives : The purpose of this study is to investigate the inhibitory or inductive potentials of Yuldahanso-tang (YDT) and Chungsimyonja-tang (CST), herbal formulas for Taeeumin, on cytochrome P450 (CYP450) drug metabolizing enzyme. The mechanisms for the herbal formula-drug interaction has not been well reported in spite of the chance for co-administration with conventional drugs. Methods : To evaluate the interaction potential of YDT-drug or CST-drug, the fluorescence-based enzyme assays on CYP450 isozymes including CYP3A4, CYP2C19, CYP2D6 and CYP2E1 were established in vitro. The inhibitory effects of herbal formulas were characterized with $IC_{50}$ values. Results : YDT showed inhibitory effects on CYP2D6 and CYP2E1-mediated metabolism, while it exhibited week inhibition on CYP3A4 and CYP2C19 relatively. CST exerted relatively weak inhibitory effects on the four CYP450 isozymes compared to that of YDT. Conclusions : These results suggest that the herbal formula-drug interaction could be occur when YDT are co-administered with drugs mediated by CYP2D6 or CYP2E1.