DOI QR코드

DOI QR Code

Inhibition of Cytochrome P450 by Propolis in Human Liver Microsomes

  • Ryu, Chang Seon (College of Pharmacy, Chungnam National University) ;
  • Oh, Soo Jin (Bio-Evaluation Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Oh, Jung Min (College of Pharmacy, Chungnam National University) ;
  • Lee, Ji-Yoon (College of Pharmacy, Chungnam National University) ;
  • Lee, Sang Yoon (College of Pharmacy, Chungnam National University) ;
  • Chae, Jung-woo (College of Pharmacy, Chungnam National University) ;
  • Kwon, Kwang-il (College of Pharmacy, Chungnam National University) ;
  • Kim, Sang Kyum (College of Pharmacy, Chungnam National University)
  • Received : 2016.04.15
  • Accepted : 2016.05.23
  • Published : 2016.07.15

Abstract

Although propolis is one of the most popular functional foods for human health, there have been no comprehensive studies of herb-drug interactions through cytochrome P450 (CYP) inhibition. The purpose of this study was to determine the inhibitory effects of propolis on the activities of CYP1A2, 2A6, 2B6, 2C9, 2C19, 2D6, 2E1 and 3A4 using pooled human liver microsomes (HLMs). Propolis inhibited CYP1A2, CYP2E1 and CYP2C19 with an $IC_{50}$ value of 6.9, 16.8, and $43.1{\mu}g/mL$, respectively, whereas CYP2A6, 2B6, 2C9, 2D6, and 3A4 were unaffected. Based on half-maximal inhibitory concentration shifts between microsomes incubated with and without nicotinamide adenine dinucleotide phosphate, propolis-induced CYP1A2, CYP2C19, and CYP2E1 inhibition was metabolism-independent. To evaluate the interaction potential between propolis and therapeutic drugs, the effects of propolis on metabolism of duloxetine, a serotonin-norepinephrine reuptake inhibitor, were determined in HLMs. CYP1A2 and CYP2D6 are involved in hydroxylation of duloxetine to 4-hydroxy duloxetine, the major metabolite, which was decreased following propolis addition in HLMs. These results raise the possibility of interactions between propolis and therapeutic drugs metabolized by CYP1A2.

Keywords

References

  1. Venkataramanan, R., Komoroski, B. and Strom, S. (2006) In vitro and in vivo assessment of herb drug interactions. Life Sci., 78, 2105-2015. https://doi.org/10.1016/j.lfs.2005.12.021
  2. Na, D.H., Ji, H.Y., Park, E.J., Kim, M.S., Liu, K.H. and Lee, H.S. (2011) Evaluation of metabolism-mediated herb-drug interactions. Arch. Pharm. Res., 34, 1829-1842. https://doi.org/10.1007/s12272-011-1105-0
  3. Lee, K.S. and Kim, S.K. (2013) Direct and metabolismdependent cytochrome P450 inhibition assays for evaluating drug-drug interactions. J. Appl. Toxicol., 33, 100-108. https://doi.org/10.1002/jat.1720
  4. Lee, S.Y., Lee, J.Y., Kang, W., Kwon, K.I., Oh, S.J., Ma, J.Y. and Kim, S.K. (2013) In vitro and in vivo assessment of cytochrome P450-mediated herb-drug interaction of Ssang-hwatang. Food Chem., 136, 450-457. https://doi.org/10.1016/j.foodchem.2012.08.069
  5. Lee, S.Y., Lee, J.Y., Kang, W., Kwon, K.I., Park, S.K., Oh, S.J., Ma, J.Y. and Kim, S.K. (2013) Cytochrome P450-mediated herb-drug interaction potential of Galgeun-tang. Food Chem. Toxicol., 51, 343-349. https://doi.org/10.1016/j.fct.2012.10.012
  6. Sobocanec, S., Sverko, V., Balog, T., Saric, A., Rusak, G., Likic, S., Kusic, B., Katalinic, V., Radic, S. and Marotti, T. (2006) Oxidant/antioxidant properties of Croatian native propolis. J. Agric. Food Chem., 54, 8018-8026. https://doi.org/10.1021/jf0612023
  7. Wang, T., Chen, L., Wu, W., Long, Y. and Wang, R. (2008) Potential cytoprotection: antioxidant defense by caffeic acid phenethyl ester against free radical-induced damage of lipids, DNA, and proteins. Can. J. Physiol. Pharmacol., 86, 279-287. https://doi.org/10.1139/Y08-029
  8. Seo, K.W., Park, M., Song, Y.J., Kim, S.J. and Yoon, K.R. (2003) The protective effects of Propolis on hepatic injury and its mechanism. Phytother. Res., 17, 250-253. https://doi.org/10.1002/ptr.1120
  9. Naramoto, K., Kato, M. and Ichihara, K. (2014) Effects of an ethanol extract of Brazilian green propolis on human cytochrome P450 enzyme activities in vitro. J. Agric. Food Chem., 62, 11296-11302. https://doi.org/10.1021/jf504034u
  10. Lee, S.Y., Jang, H., Lee, J.Y., Kwon, K.I., Oh, S.J. and Kim, S.K. (2014) Inhibition of cytochrome P450 by ethambutol in human liver. Toxicol. Lett., 229, 33-40. https://doi.org/10.1016/j.toxlet.2014.06.006
  11. Lee, J.Y., Lee, S.Y., Oh, S.J., Lee, K.H., Jung, Y.S. and Kim, S.K. (2012) Assessment of drug-drug interactions caused by metabolism-dependent cytochrome P450 inhibition. Chem. Biol. Interact., 198, 49-56. https://doi.org/10.1016/j.cbi.2012.05.007
  12. Lantz, R.J., Gillespie, T.A., Rash, T.J., Kuo, F., Skinner, M., Kuan, H.Y. and Knadler, M.P. (2003) Metabolism, excretion, and pharmacokinetics of duloxetine in healthy human subjects. Drug Metab. Dispos., 31, 1142-1150. https://doi.org/10.1124/dmd.31.9.1142
  13. Lobo, E.D., Bergstrom, R.F., Reddy, S., Quinlan, T., Chappell, J., Hong, Q., Ring, B. and Knadler, M.P. (2008) In vitro and in vivo evaluations of cytochrome P450 1A2 interactions with duloxetine. Clin. Pharmacokinet., 47, 191-202. https://doi.org/10.2165/00003088-200847030-00005
  14. Chae, J.W., Baek, H.M., Kim, S.K., Kang, H.I. and Kwon, K.I. (2013) Quantitative determination of duloxetine and its metabolite in rat plasma by HPLC-MS/MS. Biomed. Chromatogr., 27, 953-955.
  15. Ahn, M.R., Kumazawa, S., Usui, Y., Nakamura, J., Matsuka, M., Zhu, F. and Nakayama, T. (2007) Antioxidant activity and constituents of propolis collected in various areas of China. Food Chem., 101, 1383-1392. https://doi.org/10.1016/j.foodchem.2006.03.045
  16. Sibel, S. and Semiramis, K. (2005) Chemical composition and antibacterial activity of propolis collected by three different races of honeybees in the same region. J. Ethnopharmacol., 99, 69-73. https://doi.org/10.1016/j.jep.2005.01.046
  17. Sergent, T., Dupont, I., Van der Heiden, E., Scippo, M.L., Pussemier, L., Larondelle, Y. and Schneider, Y.J. (2009) CYP1A1 and CYP3A4 modulation by dietary flavonoids in human intestinal Caco-2 cells. Toxicol. Lett., 191, 216-222. https://doi.org/10.1016/j.toxlet.2009.09.002
  18. Quintieri, L., Palatini, P., Nassi, A., Ruzza, P. and Floreani, M. (2008) Flavonoids diosmetin and luteolin inhibit midazolam metabolism by human liver microsomes and recombinant CYP 3A4 and CYP3A5 enzymes. Biochem. Pharmacol., 75, 1426-1437. https://doi.org/10.1016/j.bcp.2007.11.012
  19. Jaikang, C., Chaiyasut, C., Narongchai, P., Niwatananun, K., Narongchai, S. and Kusirisin, W. (2011) Inhibitory effects of caffeic acid ester analogues on free radicals and human liver microsome CYP1A2 activities. Med. Chem., 7, 99-105. https://doi.org/10.2174/157340611794859316
  20. Beltran-Ramirez, O., Perez, R.M., Sierra-Santoyo, A. and Villa-Trevino, S. (2012) Cancer prevention mediated by caffeic acid phenethyl ester involves cyp2b1/2 modulation in hepatocarcinogenesis. Toxicol. Pathol., 40, 466-472. https://doi.org/10.1177/0192623311431947
  21. Kim, H.G., Han, E.H., Im, J.H., Lee, E.J., Jin, S.W. and Jeong, H.G. (2015) Caffeic acid phenethyl ester inhibits 3-MCinduced CYP1A1 expression through induction of hypoxiainducible factor-1${\alpha}$. Biochem. Biophys. Res. Commun., 465, 562-568. https://doi.org/10.1016/j.bbrc.2015.08.060
  22. Kimura, Y., Ito, H., Ohnishi, R. and Hatano, T. (2010) Inhibitory effects of polyphenols on human cytochrome P450 3A4 and 2C9 activity. Food Chem. Toxicol., 48, 429-435. https://doi.org/10.1016/j.fct.2009.10.041
  23. Shimada, H., Eto, M., Ohtaguro, M., Ohtsubo, M., Mizukami, Y., Ide, T. and Imamura, Y. (2010) Differential mechanisms for the inhibition of human cytochrome P450 1A2 by apigenin and genistein. J. Biochem. Mol. Toxicol., 24, 230-234. https://doi.org/10.1002/jbt.20328
  24. Lee, H., Yeom, H., Kim, Y.G., Yoon, C.N., Jin, C., Choi, J.S., Kim, B.R. and Kim, D.H. (1998) Structure-related inhibition of human hepatic caffeine N3-demethylation by naturally occurring flavonoids. Biochem. Pharmacol., 55, 1369-1375. https://doi.org/10.1016/S0006-2952(97)00644-8
  25. Schmidt, L.E. and Dalhoff, K. (2002) Food-drug interactions. Drugs, 62, 1481-1502. https://doi.org/10.2165/00003495-200262100-00005
  26. Faber, M.S., Jetter, A. and Fuhr, U. (2005) Assessment of CYP1A2 activity in clinical practice: why, how, and when? Basic Clin. Pharmacol. Toxicol., 97, 125-134. https://doi.org/10.1111/j.1742-7843.2005.pto_973160.x
  27. Fuhr, U., Anders, E.M., Mahr, G., Sorgel, F. and Staib, A.H. (1992) Inhibitory potency of quinolone antibacterial agents against cytochrome P450IA2 activity in vivo and in vitro. Antimicrob. Agents Chemother., 36, 942-948. https://doi.org/10.1128/AAC.36.5.942
  28. Christensen, M., Tybring, G., Mihara, K., Yasui-Furokori, N., Carrillo, J.A., Ramos, S.I., Andersson, K., Dah, M.L. and Bertilsson, L. (2002) Low daily 10-mg and 20-mg doses of fluvoxamine inhibit the metabolism of both caffeine (cytochrome P4501A2) and omeprazole (cytochrome P4502C19). Clin. Pharmacol. Ther., 71, 141-152. https://doi.org/10.1067/mcp.2002.121788
  29. U.S. Department of Health and Human Services, Food and Drug Administration, Center for Drug Evaluation and Research (CDER) (2012) FDA guidacnce for industry. Drug Interaction Studies - Study Design, Data Analysis, Implications for Dosing, and Labeling Recommendations.
  30. Foti, R.S. and Wahlstrom, J.L. (2008) CYP2C19 inhibition: the impact of substrate probe selection on in vitro inhibition profiles. Drug Metab. Dispos., 36, 523-528.
  31. Laethem, R.M., Balazy, M., Falck, J.R., Laethem, C.L. and Koop, D.R. (1993) Formation of 19(S)-, 19(R)-, and 18(R)-hydroxyeicosatetraenoic acids by alcohol-inducible cytochrome P450 2E1. J. Biol. Chem., 268, 12912-12918.
  32. Bhadauria, M., Nirala, S.K. and Shukla, S. (2007) Propolis protects CYP 2E1 enzymatic activity and oxidative stress induced by carbon tetrachloride. Mol. Cell. Biochem., 302, 215-224. https://doi.org/10.1007/s11010-007-9443-4

Cited by

  1. inhibitory effects of dihydromyricetin on human liver cytochrome P450 enzymes vol.55, pp.1, 2017, https://doi.org/10.1080/13880209.2017.1339284
  2. Hepato- and neuro-protective influences of biopropolis on thioacetamide-induced acute hepatic encephalopathy in rats vol.95, pp.5, 2017, https://doi.org/10.1139/cjpp-2016-0433