• Title/Summary/Keyword: Hepatocellular carcinoma cells

Search Result 311, Processing Time 0.022 seconds

Inhibitory Effect of Methanol Extract of Doenjang on Growth and DNA Synthesis of Human Cancer Cells (된장 메탄올 추출물의 인체 암세포 성장 억제 효과 및 DNA 합성 저해 효과)

  • 임선영;이숙희;박건영
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.33 no.6
    • /
    • pp.936-940
    • /
    • 2004
  • Doenjang (Korean soy paste) is one of the popular soybean based fermented foods in Korea. This study investigated the growth and DNA synthesis inhibitory effect of doenjang methanol extracts on AGS human gastric adenocarcinoma cells, Hep 3B human hepatocellular carcinoma cells and HT-29 human colon cancer cells. In order to determine an anticancer effect of doenjang methanol extracts, other soybean fermented foods and original materials were compared. The treatment of doenjang methanol extracts (200 $\mu\textrm{g}$/mL) to the AGS, Hep 3B and HT-29 cancer cells inhibited the growth of cancer cells by 80%, 77% and 86%, respectively. Compared to other soybean fermented foods and original materials, doenjang methanol extracts showed the highest growth inhibitory effect on different cancer cells. In addition, doenjang methanol extracts (200 $\mu\textrm{g}$/mL) significantly inhibited DNA synthesis of AGS and Hep 3B cancer cells by 76% and 59%, respectively. These results suggested that this anticancer effect of doenjang may be due to specific active compounds, which will be newly produced during soybean fermented process and not contained in soybean.

Inhibitory Mechanisms of Cell Cycle Regulation Induced by Indole-3-carbinol in Hepatocellular Carci-noma HepG2 Cells. (간암 세포주에서의 Indole-3-Carbinol에 의해 유도되는 세포주기 억제 기전)

  • 김동우;이광수;김민경;조율희;이철훈
    • Microbiology and Biotechnology Letters
    • /
    • v.29 no.3
    • /
    • pp.181-185
    • /
    • 2001
  • The naturally occurring chemical indole-3-carbinol (13C), found in vegetables of the Brassica genus, is a promising anticancer agent that was shown previ- ously to induce a Gl cell cycle arrest of human breast cancer cell lines, independent of estrogen receptor signaling. The anticancer activity of 13C and the possible mechanisms of its action were explored in a human hepatocellular carcinoma cell line, HepG2. Treatment of HepG2 cells with 13C suppressed the growth of the cells. The growth sup- pression caused by 13C ($IC_{50}$/: 444$\mu$M) was found to be partially due to its ability to stop the cell cycle in HepG2 cells. Western blot analysis for the Gl phase artiest demonstrated that the expression-levels of cyclin-dependent kinase (Cdk4, Cdk6) and cyclic D were reduced strongly after treatment of Hep72 cells with 13C (4007M) for 24- 72 hrs. Furthermore, I3C selectively abolished the expression of Cdk6 in a dose- and time-dependent manner, and accordingly, inhibited the phosphorylation of retinoblastoma. Interestingly, after the HepG2 cells reached their max- imal growth arrest, the level of the p21, a well-known Cdk inhibitor, increased significantly. Therefore, it could be considered that the Gl arrest of HepG2 cells treated with 13C was due to the indirect inhibition of Cdk4/6 activities by p21 Western blot analysis for G2/M phase arrest of demonstrated the levels of Cdc2 and cyclin Bl werer reduced dramatically after the treatment of HepG2 cells with 13C ($40\mu$M) for 24-72 hrs. flow cytometry of propidium iodide-stained HepG2 cells revealed that 13C induces a Gl (53%,72hr incubation) and G2 (25%,24hr incubation) cell cycle arrest. Thus, our observations have uncovered a previously undefined antiproliferative pathway for r3C that implicates Cdk4/6 and Cdc2 as a target for cell cycle control in human HepG2 cells. However, the 13C-medi- ated cell cycle arrest and repression of Cdk4/6 production did not affect the apoptotic induction of HepG2 cell.

  • PDF

Antioxidative and Anticancer Activities of Ethanol Extract of Millettia erythrocalyx (Millettia erythrocalyx 에탄올 추출물의 항산화 활성 및 항암 활성에 관한 연구)

  • Jin, Soojung;Oh, You Na;Son, Yu Ri;Choi, Sun Mi;Kwon, Hyun Ju;Kim, Byung Woo
    • Journal of Life Science
    • /
    • v.28 no.1
    • /
    • pp.50-57
    • /
    • 2018
  • Millettia erythrocalyx, a species of plant in the Fabaceae family, is widely distributed in the tropical and subtropical regions of the world, such as the Indies, China, and Thailand. The antiviral activity of flavonoids from M. erythrocalyx has been reported; however, the antioxidative and anticancer activities of M. erythrocalyx remain unclear. In this study, we evaluated the antioxidative and anticancer effects of ethanol extract of M. erythrocalyx (EEME) and the molecular mechanism of its anticancer activity in human hepatocellular carcinoma HepG2 cells. EEME exhibited significant antioxidative effects, with a concentration at 50% inhibition ($IC_{50}$) value of $2.74{\mu}g/ml$, as measured by 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay; moreover, it inhibited cell proliferation in a dose-dependent manner in HepG2 cells. Cell cycle analyses showed that EEME induced HepG2 cell accumulation in the subG1 phase in a dose-dependent manner. EEME also induced apoptosis of HepG2 cells, with increases in apoptotic cells and apoptotic bodies, as detected by Annexin V and 4,6-diamidino-2-phenylindole (DAPI) staining, respectively. Treatment with EEME resulted in increased expression of First apoptosis signal (Fas), a death receptor, and Bcl-2-associated X protein (Bax), a proapoptotic protein, and the activation of caspase-3, 8, and 9, resulting in the cleavage of poly (Adenosine diphosphate-ribose) polymerase (PARP). Collectively, these results suggest that EEME may exert an anticancer effect in HepG2 cells by inducing apoptosis via both the intrinsic and extrinsic pathways.

Induction of Metallothionein Gene by Laminin in Normal and Malignant Human Prostate Epithelial Cells (악성 단계별 인간 전립선 암세포에서 라미닌에 의한 metallothionein 유전자 발현유도 현상 연구)

  • Ock, Mee-Sun;Cha, Hee-Jae
    • Journal of Life Science
    • /
    • v.21 no.4
    • /
    • pp.529-533
    • /
    • 2011
  • Metallothioneins (MT) are a group of low-molecular weight, cysteine-rich, intracellular proteins that are encoded by a family of genes containing at least 10 functional isoforms in human. The expression and induction of these proteins is associated with protection against DNA damage, oxidative stress, and apoptosis. Many studies have shown increased expression of MT in various human tumors, whereas MT is down-regulated in certain tumors such as hepatocellular carcinoma and liver adenocarcinoma. Hence, the expression of MT is not universal to all human tumors but may depend on the differentiation status and proliferative index of tumors, along with other tissue factors and gene mutations. Using Northern blot analysis, we found that laminin induced expression of MT-1 in HSG and PC12 cells, which can be differentiated by laminin, but had no effect on MB-231, MDA-435, and PC-3 cells, which cannot be differentiated by laminin. In addition, we analyzed the expression level of the MT-1 gene in five prostate cancer cell lines possessing different metastatic potential. The expression of MT-1 in normal and less malignant cells (RWPE-1 and WPE1-NA22) was high and up-regulated by laminin, whereas the expression of MT-1 in WPE1-NB14, WPE1-NB11, and WPE1-NB26 cells (malignant) was extremely low and not elevated by laminin. These results suggest that the MT-1 gene is involved in laminin-mediated differentiation and affects the metastatic potential of tumor cells.

The Histone Methyltransferase Inhibitor BIX01294 Inhibits HIF-1α Stability and Angiogenesis

  • Oh, Su Young;Seok, Ji Yoon;Choi, Young Sun;Lee, Sung Hee;Bae, Jong-Sup;Lee, You Mie
    • Molecules and Cells
    • /
    • v.38 no.6
    • /
    • pp.528-534
    • /
    • 2015
  • Hypoxia-inducible factor (HIF) is a key regulator of tumor growth and angiogenesis. Recent studies have shown that, BIX01294, a G9a histone methyltransferase (HMT)-specific inhibitor, induces apoptosis and inhibits the proliferation, migration, and invasion of cancer cells. However, not many studies have investigated whether inhibition of G9a HMT can modulate HIF-$1{\alpha}$ stability and angiogenesis. Here, we show that BIX01294 dose-dependently decreases levels of HIF-$1{\alpha}$ in HepG2 human hepatocellular carcinoma cells. The half-life of HIF-$1{\alpha}$, expression of proline hydroxylase 2 (PHD2), hydroxylated HIF-$1{\alpha}$ and von Hippel-Lindau protein (pVHL) under hypoxic conditions were decreased by BIX01294. The mRNA expression and secretion of vascular endothelial growth factor (VEGF) were also significantly reduced by BIX01294 under hypoxic conditions in HepG2 cells. BIX01294 remarkably decreased angiogenic activity induced by VEGF in vitro, ex vivo, and in vivo, as demonstrated by assays using human umbilical vein endothelial cells (HUVECs), mouse aortic rings, and chick chorioallantoic membranes (CAMs), respectively. Furthermore, BIX01294 suppressed VEGF-induced matrix metalloproteinase 2 (MMP2) activity and inhibited VEGF-induced phosphorylation of VEGF receptor 2 (VEGFR-2), focal adhesion kinase (FAK), and paxillin in HUVECs. In addition, BIX01294 inhibited VEGF-induced formation of actin cytoskeletal stress fibers. In conclusion, we demonstrated that BIX01294 inhibits HIF-$1{\alpha}$ stability and VEGF-induced angiogenesis through the VEGFR-2 signaling pathway and actin cytoskeletal remodeling, indicating a promising approach for developing novel therapeutics to stop tumor progression.

Herbal medicine In-Jin-Ho-Tang as a potential anti-cancer drug by induction of apoptosis in human hepatoma HepG2 cells. (사람 간암 세포주인 HepG2에 대한 인진호탕(茵陳蒿湯)의 항암 효과)

  • Yun, Hyun-Joung;Kim, Byung-Wan;Lee, Chang-Hyun;Jung, Jae-Ha;Heo, Sook-Kyung;Park, Won-Hwan;Park, Sun-Dong
    • The Korea Journal of Herbology
    • /
    • v.22 no.3
    • /
    • pp.27-37
    • /
    • 2007
  • Objectives: Hepatocellular carcinoma is the most common primary malignant tumor of the liver worldwide. In-Jin-Ho-Tang(IJHT) has been used as a traditional Chinese herbal medicine since ancient time. and today it is widely applied as a medication for jaundice which is associated with inflammation in liver. In this study, I investigated whether methanol extract of IJHT induced HepG2 cancer cell death. Methods: Cytotoxic activity of IJHT on HepG2 cells was using XTT assay. Apoptosis induction by Ros A in HCT116 cells was verified by the induction of cleavage of poly ADP-ribose polymerase (PARP). and activation of caspase-3, -8 and -9. The release of cytochrome c from mitochondria to cytosol. the level of Bcl-2 and Bax and the expression of p53 and p21 were examined by western blotting analysis. Furthermore, MAPKs activation was analyzed by western blotting analysis. Results: IJHT induced apoptosis in HepG2 cells. And treatment of IJHT resulted in the release of cytochrome c into cytosol, decreased anti-apoptotic Bcl-2, and increased pri-apoptotic Bax expression. IJHT markedly inactivated extracellular signal-regulated kinase (ERK1/2), and activated p38 mitogen-activated protein (MAP) kinase. Sodium orthovanadate (SOV), a phosphatase inhibitor, to reverse IJHT-induced ERK1/2 inactivation and SB203580, a specific p38 MAP Kinase inhibitor efficiently blocked apoptosis of HepG2. Thus, IJHT induces apoptosis in HepG2 cells via MAP kinase modulation. Conclusion: These results indicated that IJHT has some potential for use as an anti-cancer agent.

  • PDF

Nonstructural NS5A Protein Regulates LIM and SH3 Domain Protein 1 to Promote Hepatitis C Virus Propagation

  • Choi, Jae-Woong;Kim, Jong-Wook;Nguyen, Lap P.;Nguyen, Huu C.;Park, Eun-Mee;Choi, Dong Hwa;Han, Kang Min;Kang, Sang Min;Tark, Dongseob;Lim, Yun-Sook;Hwang, Soon B.
    • Molecules and Cells
    • /
    • v.43 no.5
    • /
    • pp.469-478
    • /
    • 2020
  • Hepatitis C virus (HCV) propagation is highly dependent on cellular proteins. To identify the host factors involved in HCV propagation, we previously performed protein microarray assays and identified the LIM and SH3 domain protein 1 (LASP-1) as an HCV NS5A-interacting partner. LASP-1 plays an important role in the regulation of cell proliferation, migration, and protein-protein interactions. Alteration of LASP-1 expression has been implicated in hepatocellular carcinoma. However, the functional involvement of LASP-1 in HCV propagation and HCV-induced pathogenesis has not been elucidated. Here, we first verified the protein interaction of NS5A and LASP-1 by both in vitro pulldown and coimmunoprecipitation assays. We further showed that NS5A and LASP-1 were colocalized in the cytoplasm of HCV infected cells. NS5A interacted with LASP-1 through the proline motif in domain I of NS5A and the tryptophan residue in the SH3 domain of LASP-1. Knockdown of LASP1 increased HCV replication in both HCV-infected cells and HCV subgenomic replicon cells. LASP-1 negatively regulated viral propagation and thereby overexpression of LASP-1 decreased HCV replication. Moreover, HCV propagation was decreased by wild-type LASP-1 but not by an NS5A binding-defective mutant of LASP-1. We further demonstrated that LASP-1 was involved in the replication stage of the HCV life cycle. Importantly, LASP-1 expression levels were increased in persistently infected cells with HCV. These data suggest that HCV modulates LASP-1 via NS5A in order to regulate virion levels and maintain a persistent infection.

Auranofin Enhances Sulforaphane-Mediated Apoptosis in Hepatocellular Carcinoma Hep3B Cells through Inactivation of the PI3K/Akt Signaling Pathway

  • Hwangbo, Hyun;Kim, So Young;Lee, Hyesook;Park, Shin-Hyung;Hong, Su Hyun;Park, Cheol;Kim, Gi-Young;Leem, Sun-Hee;Hyun, Jin Won;Cheong, Jaehun;Choi, Yung Hyun
    • Biomolecules & Therapeutics
    • /
    • v.28 no.5
    • /
    • pp.443-455
    • /
    • 2020
  • The thioredoxin (Trx) system plays critical roles in regulating intracellular redox levels and defending organisms against oxidative stress. Recent studies indicated that Trx reductase (TrxR) was overexpressed in various types of human cancer cells indicating that the Trx-TrxR system may be a potential target for anti-cancer drug development. This study investigated the synergistic effect of auranofin, a TrxR-specific inhibitor, on sulforaphane-mediated apoptotic cell death using Hep3B cells. The results showed that sulforaphane significantly enhanced auranofin-induced apoptosis by inhibiting TrxR activity and cell proliferation compared to either single treatment. The synergistic effect of sulforaphane and auranofin on apoptosis was evidenced by an increased annexin-V-positive cells and Sub-G1 cells. The induction of apoptosis by the combined treatment caused the loss of mitochondrial membrane potential (ΔΨm) and upregulation of Bax. In addition, the proteolytic activities of caspases (-3, -8, and -9) and the degradation of poly (ADP-ribose) polymerase, a substrate protein of activated caspase-3, were also higher in the combined treatment. Moreover, combined treatment induced excessive generation of reactive oxygen species (ROS). However, treatment with N-acetyl-L-cysteine, a ROS scavenger, reduced combined treatment-induced ROS production and apoptosis. Thereby, these results deduce that ROS played a pivotal role in apoptosis induced by auranofin and sulforaphane. Furthermore, apoptosis induced by auranofin and sulforaphane was significantly increased through inhibition of the phosphoinositide 3-kinase (PI3K)/Akt pathway. Taken together, the present study demonstrated that down-regulation of TrxR activity contributed to the synergistic effect of auranofin and sulforaphane on apoptosis through ROS production and inhibition of PI3K/Akt signaling pathway.

Enhancing the Anti-cancer Activity of Non-steroidal Anti-inflammatory Drug and Down-regulation of Cancer Stemness-related Markers in Human Cancer Cells by DAPT and MHY2245 (DAPT 및 MHY2245의 비스테로이드소염제(NSAID)의 항암 활성 증강 및 종양줄기세포관련 표지자 발현 감소 활성에 대한 분자적 기전)

  • Moon, Hyun-Jung;Kang, Chi-Dug;Kim, Sun-Hee
    • Journal of Life Science
    • /
    • v.32 no.3
    • /
    • pp.210-221
    • /
    • 2022
  • This study investigated the mechanisms underlying the anti-cancer effects of non-steroidal anti-inflammatory drugs (NSAIDs) in human cancer cells in combination with either N-[N-(3, 5-difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester (DAPT), a γ-secretase inhibitor, or MHY2245, a new synthetic sirtuin 1 inhibitor. The results showed both DAPT and MHY2245 as novel chemosensitizers of human colon cancer KM12 and human hepatocellular carcinoma SNU475 cells to NSAIDs involving celecoxib and 2, 5-dimethyl celecoxib. The NSAID-induced cytotoxicity of these cells was significantly increased by DAPT and MHY2245 in a cyclooxygenase-2 independent manner. In addition, DAPT and MHY2245 reduced levels of p62, Notch1 intracellular domain, and multiple cancer stemness (CS)-related markers including Notch1, CD44, CD133, octamer-binding transcription factor 4, mutated p53 and c-Myc. However, the level of activating transcription factor 4 (ATF4) was enhanced, probably indicating the down-regulation of multiple CS-related markers by DAPT or MHY2245-mediated autophagy induction. Moreover, the NSAID-mediated reduction of p62/nuclear factor erythroid-derived 2-like 2 and CS-related marker proteins and the up-regulation of C/EBP homologous protein (CHOP)/ATF4 were accelerated by DAPT and MHY2245. As such, the combination of NSAID and either DAPT or MHY2245 resulted in higher cytotoxicity than NSAID alone by accelerating the down-regulation of multiple CS-related markers and PARP activation, indicating that both inhibitors promote NSAID-mediated autophagic cell death, possibly through the CHOP/ATF4 pathway. In conclusion, either combination strategy may be useful for the effective treatment of human cancer cells expressing CS-related markers.

Anti-tumor Activity and Apoptosis-regulation Mechanisms of Bufalin in Various Cancers: New Hope for Cancer Patients

  • Yin, Pei-Hao;Liu, Xuan;Qiu, Yan-Yan;Cai, Jian-Feng;Qin, Jian-Min;Zhu, Hui-Rong;Li, Qi
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.11
    • /
    • pp.5339-5343
    • /
    • 2012
  • The induction of apoptosis in target cells is a key mechanism for most anti-tumor therapies. Bufalin is a cardiotonic steroid that has the potential to induce differentiation and apoptosis of tumor cells. Research on bufalin has so far mainly involved leukemia, prostate cancer, gastric cancer and liver cancer, and has been confined to in vitro studies. The bufadienolides bufalin and cinobufagin have been shown to induce apoptosis in a wide spectrum of cancer cell. The present article reviews the anticancer effects of bufalin. It induces apoptosis of lung cancer cells via the PI3K/Akt pathway and also suppressed the proliferation of human non-small cell lung cancer A549 cell line in a time and dose dependent manner. Bufalin, bufotalin and gamabufotalin, key bufadienolides, significantly sensitize human breast cancer cells with differing ER-alpha status to apoptosis induction by the TNF-related apoptosis-inducing ligand (TRAIL). In addition, bufadienolides induce prostate cancer cell apoptosis more significantly than that in breast epithelial cell lines. Similar effects have been observed with hepatocellular carcinoma (HCC) but the detailed molecular mechanisms of inducing apoptosis in this case are still unclear. Bufalin exerts profound effects on leukemia therapy in vitro. Results of multiple studies indicate that bufalin has marked anti-tumor activities through its ability to induce apoptosis. Large-scale randomized, double-blind, placebo or positive drug parallel controlled studies are now required to confirm the efficacy and apoptosis-inducing potential of bufalin in various cancers in the cliniucal setting.