Browse > Article
http://dx.doi.org/10.14348/molcells.2015.0026

The Histone Methyltransferase Inhibitor BIX01294 Inhibits HIF-1α Stability and Angiogenesis  

Oh, Su Young (Research Institute of Pharmaceutical Sciences, College of Pharmacy, National Basic Research Laboratory of Vascular Homeostasis Regulation)
Seok, Ji Yoon (Research Institute of Pharmaceutical Sciences, College of Pharmacy, National Basic Research Laboratory of Vascular Homeostasis Regulation)
Choi, Young Sun (Research Institute of Pharmaceutical Sciences, College of Pharmacy, National Basic Research Laboratory of Vascular Homeostasis Regulation)
Lee, Sung Hee (College of Nursing, Kyungpook National University)
Bae, Jong-Sup (Research Institute of Pharmaceutical Sciences, College of Pharmacy, National Basic Research Laboratory of Vascular Homeostasis Regulation)
Lee, You Mie (Research Institute of Pharmaceutical Sciences, College of Pharmacy, National Basic Research Laboratory of Vascular Homeostasis Regulation)
Abstract
Hypoxia-inducible factor (HIF) is a key regulator of tumor growth and angiogenesis. Recent studies have shown that, BIX01294, a G9a histone methyltransferase (HMT)-specific inhibitor, induces apoptosis and inhibits the proliferation, migration, and invasion of cancer cells. However, not many studies have investigated whether inhibition of G9a HMT can modulate HIF-$1{\alpha}$ stability and angiogenesis. Here, we show that BIX01294 dose-dependently decreases levels of HIF-$1{\alpha}$ in HepG2 human hepatocellular carcinoma cells. The half-life of HIF-$1{\alpha}$, expression of proline hydroxylase 2 (PHD2), hydroxylated HIF-$1{\alpha}$ and von Hippel-Lindau protein (pVHL) under hypoxic conditions were decreased by BIX01294. The mRNA expression and secretion of vascular endothelial growth factor (VEGF) were also significantly reduced by BIX01294 under hypoxic conditions in HepG2 cells. BIX01294 remarkably decreased angiogenic activity induced by VEGF in vitro, ex vivo, and in vivo, as demonstrated by assays using human umbilical vein endothelial cells (HUVECs), mouse aortic rings, and chick chorioallantoic membranes (CAMs), respectively. Furthermore, BIX01294 suppressed VEGF-induced matrix metalloproteinase 2 (MMP2) activity and inhibited VEGF-induced phosphorylation of VEGF receptor 2 (VEGFR-2), focal adhesion kinase (FAK), and paxillin in HUVECs. In addition, BIX01294 inhibited VEGF-induced formation of actin cytoskeletal stress fibers. In conclusion, we demonstrated that BIX01294 inhibits HIF-$1{\alpha}$ stability and VEGF-induced angiogenesis through the VEGFR-2 signaling pathway and actin cytoskeletal remodeling, indicating a promising approach for developing novel therapeutics to stop tumor progression.
Keywords
angiogenesis; BIX01294; G9a HMT inhibitor; HIF-$1{\alpha}$;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Tavora, B., Batista, S., Reynolds, L.E., Jadeja, S., Robinson, S., Kostourou, V., Hart, I., Fruttiger, M., Parsons, M., and Hodivala-Dilke, K.M. (2010). Endothelial FAK is required for tumour angiogenesis. EMBO Mol. Med. 2, 516-52840.   DOI   ScienceOn
2 Tong, Z., Qing, Y., Wu, Y., Hu, X., Jiang, L., and Wu, X. (2014). Dioscin inhibits colon tumor growth and tumor angiogenesis through regulating VEGFR2 and AKT/MAPK signaling pathways. Toxicol. Appl. Pharmacol. 281, 166-173.   DOI   ScienceOn
3 Varier, R.A., and Timmers, H.T.M. (2011). Histone lysine methylation and demethylation pathways in cancer. Biochim. Biophys. Acta 1815, 75-89.
4 Wang, L., Zhang, Z.G., Zhang, R.L., Gregg, S.R., Hozeska-Solgot, A., Tourneau, Y.L., Wang, Y., and Chopp, M. (2006). Matrix metalloproteinase 2 (MMP2) and MMP9 secreted by erythropoietin- activated endothelial cells promote neural progenitor cell migration. N. Neurosci. 26, 5996-6003.   DOI   ScienceOn
5 Watson, J.A., Watson, C.J., McCann, A., and Baugh, J. (2010). Epigenetics, the epicenter of the hypoxic response. Epigenetics 5, 293-296.   DOI
6 Xu, W.S., Parmigiani, R.B., and Marks, P.A. (2007). Histone deacetylase inhibitors: molecular mechanisms of action. Oncogene 26, 5541-5552.   DOI   ScienceOn
7 Yee, K.M., Spivak-Kroizman, T.R. and Powis, G. (2008). HIF-1 regulation: not so easy come, easy go. Trends Biochem. Sci. 33, 526-534.   DOI   ScienceOn
8 Abedi, H., and Zachary, I. (1997). Vascular endothelial growth factor stimulates tyrosine phosphorylation and recruitment to new focal adhesions of focal adhesion kinase and paxillin in endothelial cells. J. Bio. Chem. 272, 15442-15451.   DOI   ScienceOn
9 Bardos, J.I. and Ashcroft, J. (2005). Negative and positive regulation of HIF-1: a complex network. Biochimica et Biophysica Acta 1755, 107-120.
10 Cabrita, M.A., Jones, L.M., Quizi, J.L., Sabourin, L.A., Makay, B.C., and Addison, C.L. (2011). Focal adhesion kinase inhibitors are potent anti-angiogenic agents. Mol. Oncol. 5, 517-526.   DOI   ScienceOn
11 Carroll, V.A., and Ashcroft, M. (2008). Role of hypoxia-inducible factor (HIF$1\alpha$ versus HIF-$2\alpha$ in the regulation of HIF target genes in response to hypoxia, insulin-like growth factor-I, or loss of von hippel-lindau function: implications for targeting the HIF pathway. Cancer Res. 15, 6264-6270.
12 Ellis, L., Hammers, H., and Pili, R. (2009). Targeting tumor angiogenesis with histone deacetylase inhibitors. Cancer Lett. 280, 145-153.   DOI   ScienceOn
13 Chang, Y., Zhang, X., Horton, J.R., Upadhyay, A.K., Spannhoff, A., Liu, J., Snyder, J.P., Bedford, M.T., and Cheng, X. (2009). Structural basis for G9a-like protein lysine methyltransferase inhibition by BIX-01294. Nat. Struct. Mol. Biol. 16. 312-317.   DOI   ScienceOn
14 Chen, M.W., Hua, K.T., Kao, H.J., Chi, C.C., Wei, L.H., Johansson, G., Shiah, S.G., Chen, P.S., Jeon, Y.M, Cheng, T.Y., et al. (2010). H3K9 histone methyltransferase G9a promotes lung cancer invasion and metastasis by silencing the cell adhesion molecule Ep-CAM. Cancer Res. 70, 7830-7840.   DOI   ScienceOn
15 Choi, J.H., Nguyen, M.P., Lee, D., Oh, G.T., and Lee, Y.M. (2014). Hypoxia-induced endothelial progenitor cell function is blunted in angiotensinogen knockout mice. Mol. Cells 37, 487-496.   DOI   ScienceOn
16 Forsythe, J.A., Jiang, B.H., Iyer, N.V., Agani, F., Leung, S.W., Koos, R.D., and Semenza, G.L. (1996). Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1. Mol. Cell. Biol. 16, 4604-4613.   DOI
17 German, A.E., Mammoto, T., Jiang, E., Ingber, D.E., and Mammoto, A. (2014). Paxillin controls endothelial cell migration and tumor angiogenesis by altering neuropilin 2 expression. J. Cell Sci. 127, 1672-1683.   DOI   ScienceOn
18 Hatzimichael, E., Dasoula, A., Shah, R., Syed, N., Papoudou-Bai, A., Coley, H.M., Dranitasris, G., Bourantas, K.L., Stebbing, J., and Crook, T. (2010). The prolyl-hydroxylase EGLN3 and not EGLN1 is inactivated by methylation in plasma cell neoplasia. Eur. J. Haematol. 84, 47-51.   DOI   ScienceOn
19 Ke, Q., and Costa, M. (2006). Hypoxia-inducible factor-1 (HIF-1). Mol. Pharm. 70, 1469-1480.   DOI   ScienceOn
20 Karagiannis, E.D., and Popel, A.S. (2006). Distinct modes of collagen type I proteolysis by matrix metalloproteinase (MMP) 2 and membrane type I MMP during the migration of a tip endothelial cell: insights from a computational model. J. Theor. Biol. 238, 124-145.   DOI   ScienceOn
21 Kim, Y., Kim, Y.S., Kim, D.E., Lee, J.S., Song, J.H., Kim, H.G., Cho, D.H., Jeong, S.Y., Jin, D.H., Jang, S.J. et al. (2013). BIX-01294 induces autophagy-associated cell death via EHMT2/G9a dysfunction and intracellular reactive oxygen species production. Autophagy 9, 2126-2139.   DOI   ScienceOn
22 Kiselyov, A., Balakin, K.V., and Tkachenko, S.E. (2007). VEGF/VEGFR signaling as a target for inhibiting angiogenesis. Pepert. Pion. Investig. Drugs 16, 83-107.
23 Kuljaca, S., Liu, T., Tee, A.E.L., Haber, M. Norris, Dwarte, G.M., and Marshall, M.D.T. (2007). Enhancing the anti-angiogenic action of histone deacetylase inhibitors. Mol. Cancer 6, 1-11.
24 Law, A.Y., Lai, K.P., Ip, C.K., Wong, A.S., Wagner, G.F., and Wong, C.K. (2008). Epigenetic and HIF-1 regulation of stanniocalcin-2 expression in human cancer cells. Exp. Cell Res. 314, 1823-1830.   DOI   ScienceOn
25 Lee, J.S., Kim, Y., Kim, I.S., Kim, B., Choi, H.J., Lee, J.M., Shin, H.J., Kim, J.H., Kim, J.Y., Seo, S.B., et al. (2010). Negative regulation of hypoxic responses via induced reptin methylation. Mol. Cell 39, 71-85.   DOI   ScienceOn
26 Lee, J.S., Kim, Y., Bhin, J., Shin, H.J., Nam, H.J., Lee, S.H., Yoon, J.B., Binda, O., Gozani, O., Hwang, D., et al. (2011). Hypoxiainduced methylation of a pontin chromatin remodeling factor. Proc. Natl. Acad. Sci. USA 108, 13510-13515.   DOI   ScienceOn
27 Mamahon, G. (2000). VEGF receptor signaling in tumor angiogenesis. Oncologist 5, 3-10.   DOI
28 Lu, C., Han, H.D., Mangala, L.S., Ali-Fehmi, R., Newton, C.S., Ozbun, L., Armaiz-Pena, G.N., Hu, W., Stone, R.L., Munkarah, A., et al. (2010). Regulation of tumor angiogenesis by EZH2. Cancer Cell 18, 185-197.   DOI   ScienceOn
29 Lu, Z., Tian, Y. Salwen, H.R., Chlenski, A., Godley, L.A., Raj, J.U., and Yang, Q. (2013). Histone-lysine methyltransferase EHMT2 is involved in proliferation, apoptosis, cell invasion, and DNA methylation of human neuroblastoma cells. Anti-Cancer Drugs 24, 484-493.   DOI
30 Ma, N. (2011). HIF-1 is the commander of gateways to cancer. Nagy J. Cancer Sci. Ther. 3, 35-40.
31 Nguyen, M.P., Lee, S., and Lee, Y.M. (2013). Epigenetic regulation of hypoxia inducible factor in diseases and therapeutics. Arch. Pharm. Res. 36, 252-263.   DOI   ScienceOn
32 Rundhaug, J.E. (2003). Matrix metalloproteinases, angiogenesis, and cancer. Clin. Cancer Res. 9, 551-554.
33 Schaller, M.D. (2001). Paxillin: a focal adhesion-associated adaptor protein. Oncogene 20, 6459-6472.   DOI
34 Sigalotti, L., Fratta, E., Coral, S., and Maio, M. (2014). Epigenetic drugs as immunomodulators for combination therapies in solid tumors. Pharmacol. Ther. 142, 339-350.   DOI   ScienceOn
35 Stroka, D.M., Burkhardt, T., Desbaillets, I., Wenger, R.H., Neil, D.A.H., Bauer, C., Gassmann, M., and Caninas, D. (2001). HIF- 1 is expressed in normoxic tissue and displays an organ-specific regulation under systemic hypoxia. FASEB J. 15, 2445-2453.   DOI