• 제목/요약/키워드: Helmholtz Integral

검색결과 57건 처리시간 0.024초

경계배치법에 의한 근거리 음장 해석 기법 연구; 가중치를 갖는 선배열 음원의 최적 측정점 개수의 결정 (Study on Sound Field Analysis in Near-Field using Boundary Collocation Method; Decision of Optimum Points of Measurement for Line Array Sound Source with Weighting Value)

  • 김원호
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2000년도 춘계학술대회논문집
    • /
    • pp.1752-1761
    • /
    • 2000
  • This paper describes the far-field estimation using the near-field measurement data. Measurement in far-field region gives us the acoustical characteristics of the source but in general measurement is made in near-field such as acoustic water tank or anechoic chamber, so far-field acoustical characteristics of the source should be predicted from near-field data. In this case, the number of measurement points in the near field which relates to the accuracy of the predicted field and the amount of data processing, should be optimized. Existing papers say that measurement points is proportional to kL and depends on geometry and directivity of the source. But they do not give us any definite criterion for the required number of measurement points. Boundary Collocation Method which is one of the far-field prediction methods, is analyzed based on Helmholtz integral equation and Green function and it has been found that the number of measurement points is optimized as 0.54kL which is about one half of the existing results.

  • PDF

웨지가 있는 원심 임펠러의 유동장 및 방사 음향장 해석(II) -원심홴의 산란 음향장 예측- (An Analysis of the Flow Field and Radiation Acoustic Field of Centrifugal Fan with Wedge -The Prediction of the Scattered Sound Field-)

  • 이덕주;전완호
    • 대한기계학회논문집B
    • /
    • 제25권9호
    • /
    • pp.1165-1174
    • /
    • 2001
  • The objective of this study is to understand the generation mechanism of sound and to develop a prediction method for the acoustic pressure field of a centrifugal fan. If the fan is operating at the free field without the casing, the acoustic analogy is a good method to predict the acoustic of the fan. But, the casing gives a dominant effect to the radiated sound field and the scattering effect of casing should be considered. So, in this paper the Kirchhoff-BEM is developed, which can consider the scattering effect of the rigid body. In order to consider the scattering and diffraction effects owing to the casing, BEM is introduced. The source of BEM is newly developed, so the sound field of the centrifugal fan can be obtained. In order to compare the predicted one with experimental data, a centrifugal impeller and a wedge are used in the numerical calculation and the results are compared with the experimental data. Reasonable results are obtained not only for the peak frequencies but also for the amplitudes of the tonal sound. The radiated acoustic field shows the diffraction and scattering effects of the wedge clearly.

경계요소 해석과 진동 실험을 이용한 단순 평판의 방사 음향 예측 (Estimation of sound radiation for a flat plate by using BEM and vibration experiment)

  • 김관주;김정태;최승권
    • 소음진동
    • /
    • 제10권5호
    • /
    • pp.843-848
    • /
    • 2000
  • BEA(Boundary Element Analysis) based on Kirchhoff-Helmholtz integral equation is widely used in the prediction of sound radiation problems of vibrating structures. Accurate estimation of sound pressure distribution by BEA can be [possible if and only if dynamic behavior of the relating structure was described correctly. Another plausible method of sound radiation phenomena could be the NAH(Nearfield Acoustic Holography) method. NAH also based on the identical governing equation with BEA could be one of the best acoustic imaging schemes but it has disadvantages of the complexity of measurement and of the need of large amount of measuring points. In this paper, modal expansion method is presented for taking accurate dynamic data of the structures efficiently. This method makes use of vibration principle an arbitrary dynamic behavior of the structure is described by the summation of that structures mode shapes which can be calculated by FEA easily and accurately. Sound pressure field from a vibration flat plate is calculated using the combination of vibration signal on that flat plate from experiment, and of the natural mode shapes form FEA. When sound pressure field from vibration signal is calculated the importance of the phase information was emphasized.

  • PDF

Noise Analysis for Large Silencers of Ships and Off-shore Plants using Energy Flow Analysis

  • Kim, Tae-Gyoung;Song, Jee-Hun;Hong, Suk-Yoon
    • 해양환경안전학회지
    • /
    • 제26권3호
    • /
    • pp.297-307
    • /
    • 2020
  • In the study, energy flow analysis is performed to predict the performance of silencers. To date, deterministic approaches such as finite element method have been widely used for silencer analysis. However, they have limitations in analyzing large structures and mid-high frequency ranges due to unreasonable computational costs and errors. However, silencers used for ships and off-shore plants are much larger than those used in other engineering fields. Hence, energy governing equation, which is significantly efficient for systems with high modal density, is solved for silencers in ships and off-shore plants. The silencer is divided into two different acoustic media, air and absorption materials. The discontinuity of energy density at interfaces is solved via hypersingular integrals for the 3-D modified Helmholtz equation to analyze multi-domain problems with the energy flow boundary element method. The method is verified by comparing the measurements and analysis results for ship silencers over mid-high frequency ranges. The comparisons confirm good agreement between the measurement and analysis results. We confirm that the applied analysis method is useful for large silencers in mid-high frequency ranges. With the proven procedures, energy flow analysis can be performed for various types of silencer used in ships and off-shore plants in the first stage of the design.

라게르 함수를 이용한 일반적인 분산 매질의 시간 영역 해석 (Transient Analysis of General Dispersive Media Using Laguerre Functions)

  • 이창화;권우현;정백호
    • 한국전자파학회논문지
    • /
    • 제22권10호
    • /
    • pp.1005-1011
    • /
    • 2011
  • 본 논문에서는 일반적인 분산 매질의 전자기 과도 응답을 해석하기 위하여 헬름홀츠 방정식에 근거한 MODFDM(Marching-on-in-Degree Finite Difference Method) 기법을 제안한다. 라게르 함수의 특성을 이용하여 시간에 대한 미분항과 상승 적분(convolution integral)의 근사를 해석적으로 처리하였다. 본 기법의 기본적인 독창성은 전장과 전속 밀도, 유전율 등을 모두 라게르 함수로 전개한 다음, 갤러킨 시험 과정을 적용하여 시간 변수를 완전히 제거하였을 뿐만 아니라, 기존의 FDTD(Finite Difference Time-Domain) 방법과 달리 최종 계산식에 공간적인 유한 차분만을 적용하는데 있다. 일반적인 분산 매질의 해석에 적용 가능함을 보이기 위하여 대표적인 드바이, 드루드 및 로렌츠 분산 매질에 대한 전자기 과도 응답을 수치예로 보인다.

수중실험을 통한 원통구조물의 3차원 수중방사소음 패턴 산출기법 분석 (A Analysis on the Estimation Method of the 3D Underwater Radiation Noise Pattern of Cylindrical Structure with the Underwater Experiments)

  • 이종주;강명환;한승진;정현주;오준석;배수룡;정우진;서영수
    • 한국소음진동공학회논문집
    • /
    • 제24권11호
    • /
    • pp.907-918
    • /
    • 2014
  • In this study for the prediction of 3D underwater radiated noise pattern, a comparison between the proposed method(DHIE, Discrete Helmholtz Integral Equation) and the 3D underwater radiated noise calculation results using the measurement of near-field acoustic pressure data is performed. The near-field acoustic pressure in water is measured for the calculation of the far-field radiated noise pattern and the far-field acoustic power. Also the vibration field of the underwater structure is measured in simultaneously. Using the total far-field acoustic power and the vibration field on the surface of the structure, the proposed method(DHIE) can predict the underwater radiated noise pattern of the far-field The predicted results show the reasonable agreement within about 5dB comparing with the experiment result.

항공기용 유압 펌프의 맥동 압력에 의한 감쇄기 용접부위 균열 개선 연구 (The Vibration Effect by Induced Pulsation Pressure to the Fatigue Crack of the Dampener Fitting Welding Zone)

  • 신재혁;김태환;강구헌;하도준
    • 한국산학기술학회논문지
    • /
    • 제18권7호
    • /
    • pp.677-687
    • /
    • 2017
  • 항공기는 운용 중에 엔진, 유압펌프, 공력 등에 의한 진동 환경에 노출이 되어 기계구조와 각종 구성품이 고주기 피로로 인해 균열이나 파괴가 될 수 있다. 통상적으로 항공기용 유압 펌프는 액셜 피스톤 타입이 주로 적용되고 있으며, 펌프의 특성상 연속적인 회전에 의한 유량 맥동 발생은 필연적으로 수반된다. 이러한 유압펌프 맥동에 의한 진동을 감소시키기 위해 설치된 Dampener Fitting의 용접 부위에서 균열이 발생하였다. 용접 부위 균열의 원인 파악을 위해 파단면 분석 및 성분분석을 수행하였고, 균열 방지를 위한 설계 개선사항으로 일체형 Fitting 가공 방식을 적용하였다. 일체형 Fitting의 적용 타당성에 대한 설계검증을 위해 구조건전성 응력 해석, 피로수명 해석, 인증시험 및 항공기 체계 장착 시험을 수행하였다. 개선방안에 대한 해석 결과 재료의 요구수명 및 각종 시험의 요구조건에 만족하는 결과를 얻었으며, 개선방안을 운영 항공기에 적용 할 수 있는 것을 객관적으로 검증하였다.