• 제목/요약/키워드: Helmholtz Integral

검색결과 57건 처리시간 0.024초

Wiener-Hopf 적분방정식으로부터 파수영역에서의 쌍적분 방정식 유도에 관한 검토 (Investigation on Derivation of the Dual Integral Equation in the Spectral Domain from Wiener-Hopf Integral Equation)

  • 하헌태;라정웅
    • 전자공학회논문지D
    • /
    • 제35D권6호
    • /
    • pp.8-14
    • /
    • 1998
  • Wiener-Hopf 적분방정식으로부터 경계면 위의 전체파를 미지수로 하는 파수영역에서의 쌍적분 방정식을 얻는 기존의 유도과정을 검토하였다. 이러한 기존의 유도 과정은 결국 Wiener-Hopf 적분방정식으로부터 Helmholtz-Kirchhoff 적분방정식을 유도하는 과정임을 해석적으로 보였다.

  • PDF

헬름홀쯔 적분 방정식에 기반을 둔 구조물의 음향방사 및 구조/음향 연성 수치해석 (Numerical Simulation of Acoustic Radiation and Fluid/Structure Interaction Based on the Helmholtz Integral Equation)

  • 최성훈
    • 한국음향학회지
    • /
    • 제27권8호
    • /
    • pp.411-417
    • /
    • 2008
  • 본 논문에서는 헬름홀쯔 적분 방정식에서 유도된 식을 이용하여 구조물의 표면 압력을 구조진동 성분에 대한 단순한 적분형태로 표현하여 음향방사 및 구조/음향 연성 문제를 수치적으로 푸는 방법에 대하여 다룬다. 이 식은 임의의 형상에 대하여 유도된 식으로 Rayleigh 식과 유사한 형태를 갖는다. 이 식을 이용하면 표면 압력을 구조물의 속도에 대한 단순 적분 형태로 나타낼 수 있기 때문에 경계요소법과 같이 연립방정식에 대한 행렬식을 풀 필요가 없다. 또한 헬름홀쯔 적분 방정식에 기반을 둔 다른 방법 들이 가지는 해의 유일성 문제도 갖지 않는 장점이 있다. 본 논문에서는 구형 셀에 대하여 수치해와 정해를 비교하여 제안한 방법의 타당성을 검증하였다.

REMOVAL OF HYPERSINGULARITY IN A DIRECT BEM FORMULATION

  • Lee, BongJu
    • Korean Journal of Mathematics
    • /
    • 제18권4호
    • /
    • pp.425-440
    • /
    • 2010
  • Using Green's theorem, elliptic boundary value problems can be converted to boundary integral equations. A numerical methods for boundary integral equations are boundary elementary method(BEM). BEM has advantages over finite element method(FEM) whenever the fundamental solutions are known. Helmholtz type equations arise naturally in many physical applications. In a boundary integral formulation for the exterior Neumann there occurs a hypersingular operator which exhibits a strong singularity like $\frac{1}{|x-y|^3}$ and hence is not an integrable function. In this paper we are going to remove this hypersingularity by reducing the regularity of test functions.

구조물의 방사음장을 계산하는 효율적인 방법 (An efficient method to predict the radiated pressure field from a vibrating structure)

  • 최성훈
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2001년도 추계학술대회논문집 II
    • /
    • pp.1078-1082
    • /
    • 2001
  • An alternative formulation of the Helmholtz integral equation is derived to express the pressure field explicitly in terms of the velocity vector of a radiating surface. This formulation, derived for arbitrary sources, is similar in form to the Rayleigh's formula for planar sources. Because the pressure field is expressed explicitly as a surface integral of the particle velocity, which can be implemented numerically using standard Gaussian quadratures, there is no need to use Boundary element method to solve a set of simultaneous equations for the surface pressure at the discretized nodes. Furthermore the non-uniqueness problem inherent in methods based on Helmholtz integral equation is avoided. Validation of this formulation is demonstrated for some simple geometries.

  • PDF

일반 경계 조건을 가진 얇은 물체에 대한 직접 경계 요소법의 개발 (Development of the Direct Boundary Element Method for Thin Bodies with General bBundary Conditions)

  • 이강덕;이덕주
    • 소음진동
    • /
    • 제7권6호
    • /
    • pp.975-984
    • /
    • 1997
  • A direct boundary element method (DBEM) is developed for thin bodies whose surfaces are rigid or compliant. The Helmholtz integral equation and its normal derivative integral equation are adoped simultaneously to calculate the pressure on both sides of the thin body, instead of the jump values across it, to account for the different surface conditions of each side. Unlike the usual assumption, the normal velocity is assumed to be discontinuous across the thin body. In this approach, only the neutral surface of the thin body has to be discretized. The method is validated by comparison with analytic and/or numerical results for acoustic scattering and radiation from several surface conditions of the thin body; the surfaces are rigid when stationary or vibrating, and part of the interior surface is lined with a sound-absoring material.

  • PDF

변속기 케이스에서 발생하는 방사소음 해석 및 저감 설계 (Analysis of the Sound Radiation of Transmission Gearbox Housing and Reduction Design)

  • 정성영;오하영;박준홍;박경진;이현아;최중선
    • 한국소음진동공학회논문집
    • /
    • 제20권6호
    • /
    • pp.521-527
    • /
    • 2010
  • This article presents a method to calculate the sound radiation of transmission gearbox housing by using Helmholtz integral. Rayleigh integral is used to verify the method. Half-space radiation is considered because the actual gearbox housing is on hard place like concrete. For optimization, orthogonal array is used as a fractional factorial design method. Sound Radiation is calculated with simple source like plate and sphere shape, then actual gearbox BEM model is applied to the method.

평균 유동을 고려한 1차원 그린 함수를 이용한 덕트 내부의 음장 예측 방법 (Prediction of Sound Field Inside Duct with Moving Medium by using one Dimensional Green's function)

  • 전종훈;김양한
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 추계학술대회논문집
    • /
    • pp.915-918
    • /
    • 2005
  • Acoustic holography uses Kirchhoff·Helmholtz integral equation and Green's function which satisfies Dirichlet boundary condition Applications of acoustic holography have been taken to the sound field neglecting the effect of flow. The uniform flow, however, changes sound field and the governing equation, Green's function and so on. Thus the conventional method of acoustic holography should be changed. In this research, one possibility to apply acoustic holography to the sound field with uniform flow is introduced through checking for the plane wave in a duct. Change of Green's function due to uniform flow and one method to derive modified form of Kirchhoff·Heimholtz integral is suggested for 1-dimensional sound field. Derivation results show that using Green's function satisfying Dirichlet boundary condition, we can predict sound pressure in a duct using boundary value.

  • PDF

음장 재현에서의 유일성 문제 (Uniqueness Problem in Sound Field Reproduction)

  • 장지호;김양한
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2008년도 춘계학술대회논문집
    • /
    • pp.916-919
    • /
    • 2008
  • This paper deals with a means to reproduce sound field by using Kirchhoff-Helmholtz integral equation. We control boundary value or generate sound sources on the boundary in order to control the sound field as we want. The method assumes that there is a unique relation between sound field and its boundary should. Otherwise the reproduced sound field is different from what we want generate; the original sound field. Half-infinite sound field and finite sound field are considered and whether the uniqueness is hold or not and how the reproduced field is generated are discussed in each case.

  • PDF

효율적 실내 소음 저감을 위한 흡음재 분포 위치 결정 방법 (A Method to Arrange Absorptive Materials on Walls for Effective Interior Noise Control)

  • 조성호;김양한
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.1702-1707
    • /
    • 2003
  • Absorptive material arrangement method for effective interior noise control is proposed. Sound field with arbitrary boundary condition is formulated by Kirchhoff-Helmholtz integral equation. A simple example such as a rectangular cavity will present physical meaning between changing boundary condition and control of sound field. The effect of changing boundary condition is expressed in modal admittance. From this formulation, an admittance map is presented. The admittance map is the figure to represent position where absorptive material is attached. The admittance map can be assigned to each resonant frequency. There, however, may be common area of those maps. Then, frequency robust arrangement of absorptive material in noise control will be presented.

  • PDF

경계 조건이 음장에 미치는 영향 (Effect of Boundary Condition Changes on the Sound Field)

  • 조성호;김양한;최성훈
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2001년도 추계학술대회논문집 II
    • /
    • pp.1317-1322
    • /
    • 2001
  • What changes in the eigen values and eigen functions are produced if the boundary surface S is no longer rigid but has a specific acoustic admittance which may vary from point to point on S. In this paper, changes in eigen values and eigen functions are derived by using Kirchhoff-Helmholtz integral equation. And acoustic potential energy, which is representative measure describing the physical quantity in cavity, is defined. Acoustic potential energy can be divided into primary one and secondary one. Primary one is the acoustic potential energy through unchanged eigen functions, and secondary one is through changed eigen functions. Using these two term, we can find the eigenvalue problem, which gives the control performance when the boundary condition is changed.

  • PDF