In this paper, we derive dynamic equation of helicopter and design controller based on variable structure system. It is difficult to control helicopter because it has non-linear coupling between input and output of system and is MIMO system. The design of control law is considered here using variable structure methodology giving the robustness to parameter variations and invariance to some subsets of external disturbance. However we derive dynamic equations of helicopter and design stabilizing variable structure controller. Also, simulation results are given in this paper.
This paper presents a new attitude stabilization and control of an unmanned helicopter based on neural network compensation. A systematic derivation on the dynamics of an unmanned small-scale helicopter is performed. Combined rotor-fuselage-tail dynamics is derived in body-fixed reference frame with its origin at the C.G. of the helicopter. And the resulting nonlinear equation of motion consists of 6-DOF air vehicle dynamics as well as the rotor flapping and engine torque equations. A simulation model was modified using the existing simulator for an unmanned helicopter dynamic model, which reflects the unmanned test helicopter(CNUHELI). The dynamic response of the refined model was compared with the flight test data. It can be shown that a good coincidence was accomplished between the real unmanned helicopter system and the mathematical model. This dynamic model was linearized for classical controller design using small perturbation method. A Neuro-PD control system was designed for both longitudinal and lateral flight modes, and the results were compared with the PD-only control response. Simulation results show that the proposed Neuro-PD control system demonstrates better performance.
헬리콥터 비행 시뮬레이션을 위한 로터 운동방정식을 implicit formulation 형태로 유도하였다. 좌표계 사이의 상대운동을 고려한 일반화된 벡터 kinematics 를 유도하고 이를 적용하여 브레이드 임의 위치 에서 관성속도 및 관성가속도를 구하였다. 유도된 속도 및 가속도 벡터를 이용하여 플래핑, 리드래그 및 토오크 방정식 등을 implicit form으로 유도하였다. 브레이드 스팬에 따른 공간 적분 방법을 살펴보고, 다양한 힌지형상 및 힌지배열 순서에 관계없이 응용영역을 확장할 수 있음을 밝혔다. DAE(Differential Algebraic Equation) 형태를 갖는 본 연구의 결과식을 이용하여 동특성 계산을 위한 시간적분법을 검토하였다.
In this paper dynamic modeling parameters were estimated using a frequency domain estimation method. A systematic flight test method was employed using preprogrammed multistep excitation of the swashplate control input. In addition when one axis is excited, the autopilot is engaged in the other axis, thereby obtaining high-quality flight data. A dynamic model was derived for a small scale unmanned helicopter (CNUHELI-020, developed by Chungnam National University) equipped with a Bell-Hiller stabilizer bar. Six degree of freedom equations of motion were derived using the total forces and moments acting on the small scale helicopter. The dynamics of the main rotor is simplified by the first order tip-path plane, and the aerodynamic effects of fuselage, tail rotor, engine, and horizontal/vertical stabilizer were considered. Trim analysis and linearized model were used as a basic model for the parameter estimation. Doublet and multistep inputs are used to excite dynamic motions of the helicopter. The system and input matrices were estimated in the frequency domain using the equation error method in order to match the data of flight test with those of the dynamic modeling. The dynamic modeling and the flight test show similar time responses, which validates the consequence of analytic modeling and the procedures of parameter estimation.
Dynamic Stall is a flow phenomenon which occurs on the retreating side of helicopter rotor blades during forward flight. It also occurs on blades of stall regulated wind turbines under yawing conditions as well as during gust loads. Time scales occurring during this process are comparable on both helicopter and wind turbine blades. Dynamic Stall limits the speed of the helicopter and its manoeuvrability and limits the amount of power production of wind turbines. Extensive numerical as well as experimental investigations have been carried out recently to get detailed insight into the very complex flow structures of the Dynamic Stall process. Numerical codes have to be based on the full equations, i.e. the Navier-Stokes equations to cover the scope of the problems involved: Time dependent flow, unsteady flow separation, vortex development and shedding, compressibility effects, turbulence, transition and 3D-effects, etc. have to be taken into account. In addition to the numerical treatment of the Dynamic Stall problem suitable wind tunnel experiments are inevitable. Comparisons of experimental data with calculated results show us the state of the art and validity of the CFD-codes and the necessity to further improve calculation procedures. In the present paper the phenomenon of Dynamic Stall will be discussed first. This discussion is followed by comparisons of some recently obtained experimental and numerical results for an oscillating helicopter airfoil under Dynamic Stall conditions. From the knowledge base of the Dynamic Stall Problems, the next step can be envisaged: to control Dynamic Stall. The present discussion will address two different Dynamic Stall control methodologies: the Nose-Droop concept and the application of Leading Edge Vortex Generators (LEVoG's) as examples of active and passive control devices. It will be shown that experimental results are available but CFD-data are only of limited comparison. A lot of future work has to be done in CFD-code development to fill this gap. Here mainly 3D-effects as well as improvements of both turbulence and transition modelling are of major concern.
In this study, the dynamic characteristics for the wheel-type landing gear system of helicopter have been analyzed. Nonlinear multi-body dynamic models of the landing gear system are constructed and the equations of motion, kinematics and internal forces of shock strut are considered. In addition, flexibility effect of the wheel axle with equivalent beam element is taken into account. General purpose commercial finite code, SAMCEF which includes MECANO module is applied. The results of dynamic simulation for various landing and weight conditions are presented and compared with each other. Based on the results, characteristics of impact dynamic behaviors of the landing gear system are practically investigated.
Helicopter system is regarded as a challenging example in multivariable robust control application since the dynamics of helicopter is highly coupled and nonlinear. In this paper, Dynamic equations for model helicopter at hover are derived. Various system properties are stated with respect to control of the attitude of the vehicle. A linearized model is used to analyse the system stability and to design the attitude controller. The simulation results of LQG controller are presented.
본 논문은 헬리콥터 비선형 제어기 설계를 위한 State-Dependent Riccati Equation (SDRE) 기법을 다루었다. SDRE 제어기법은 비선형 운동방정식에 대해 선형 시스템과 같은 구조를 갖는 방정식을 필요하기 때문에 State-Dependent Coefficient (SDC) factorization 기법을 개발하여 비선형 운동방정식으로부터 이러한 구조의 방정식을 유도하였다. SDRE제어기를 온라인상에서 설계하는데 필요한 대수 Riccati 방정식의 효율적인 수치해법을 연구하였다. 본 연구에서 제안된 수치기법을 헬리콥터의 경로추종문제로 적용하였으며, 고 신뢰도의 헬리콥터 수학적 모델을 적용하여 실시간으로 SDRE 제어기를 설계할 수 있는 방안을 제안하였다.
This paper deals with the control of a nonlinear experimental helicopter system by using the fuzzy-model-based control approach. The fuzzy model of the experimental helicopter system is constructed from the original nonlinear dynamic equations in the form of an affine Takagi-Sugeno (TS) fuzzy system. In order to design a feasible switching-type fuzzy-model-based controller, the TS fuzzy system is converted to a set of uncertain linear systems, which is used as a basic framework to synthesize the fuzzy-model-based controller.
Lever II 헬리콥터 비행운동 방정식으로부터 주기성 트림해를 구하기 위해 DAE 해법에 근거한 PPTA(Partial Periodic Trimming Algorithm)를 제안하였다. PPTA의 반복계산으로 수정된 상태변수는 적합한 초기조건이 요구되는 DAE해법에서 수치불안정을 일으킬 수 있다. 간단하게 DAE 차수를 조절함으로써 정확한 주기성 트림을 얻을 수 있었다. 수치해법을 CBM(Common Baseline Model) 헬리콥터에 적용하여 harmonic balance 방법과 동일한 트림해를 얻었으며 시뮬레이션 초기의 과도응답을 효과적으로 제거할 수 있음을 밝혔다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.