• Title/Summary/Keyword: Helicopter Design

Search Result 298, Processing Time 0.03 seconds

Improving aeroelastic characteristics of helicopter rotor blades in forward flight

  • Badran, Hossam T.;Tawfik, Mohammad;Negm, Hani M.
    • Advances in aircraft and spacecraft science
    • /
    • v.6 no.1
    • /
    • pp.31-49
    • /
    • 2019
  • Flutter is a dangerous phenomenon encountered in flexible structures subjected to aerodynamic forces. This includes aircraft, helicopter blades, engine rotors, buildings and bridges. Flutter occurs as a result of interactions between aerodynamic, stiffness and inertia forces on a structure. The conventional method for designing a rotor blade to be free from flutter instability throughout the helicopter's flight regime is to design the blade so that the aerodynamic center (AC), elastic axis (EA) and center of gravity (CG) are coincident and located at the quarter-chord. While this assures freedom from flutter, it adds constraints on rotor blade design which are not usually followed in fixed wing design. Periodic Structures have been in the focus of research for their useful characteristics and ability to attenuate vibration in frequency bands called "stop-bands". A periodic structure consists of cells which differ in material or geometry. As vibration waves travel along the structure and face the cell boundaries, some waves pass and some are reflected back, which may cause destructive interference with the succeeding waves. In this work, we analyze the flutter characteristics of a helicopter blades with a periodic change in their sandwich material using a finite element structural model. Results shows great improvements in the flutter forward speed of the rotating blade obtained by using periodic design and increasing the number of periodic cells.

Design of 6-DOF Attitude Controller of the UAV Simulator's Hovering Model

  • Keh, Joong-Eup;Lee, Mal-Young;Kim, Byeong-Il;Chang, Yu-Shin;Lee, Man-Hyung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.969-974
    • /
    • 2004
  • For a maneuvering unmanned autonomous helicopter, it is necessary to design a proper controller of each flight mode. In this paper, overall helicopter dynamics is derived and hovering model is linearized and transformed into a state equation form. However, since it is difficult to obtain parameters of stability derivatives in the state equation directly, a linear control model is derived by time-domain parametric system identification method with real flight data of the model helicopter. Then, two different controllers - a linear feedback controller with proportional gains and a robust controller - are designed and their performance is compared. Both proposed controllers show outstanding results by computer simulation. These validated controllers can be used to autonomous flight controller of a real unmanned model helicopter.

  • PDF

A Study on Design of Neuro- Fuzzy Controller for Attitude Control of Helicopter (헬리콥터 자세제어를 위한 뉴로 퍼지 제어기의 설계에 관한 연구)

  • Choi, Yong-Sun;Lim, Tae-Woo;Jang, Gung-Won;Ahn, Tae-Chon
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2283-2285
    • /
    • 2001
  • This paper proposed to a neural network based fuzzy control (neuro-fuzzy control) technique for attitude control of helicopter with strongly dynamic nonlinearities and derived a helicopter aerodynamic torque equation of helicopter and the force balance equation. A neuro-fuzzy system is a feedforward network that employs a back-propagation algorithm for learning purpose. A neuro-fuzzy system is used to identify nonlinear dynamic systems. Hence, this paper presents methods for the design of a neural network(NN) based fuzzy controller(that is, neuro-fuzzy control) for a helicopter of nonlinear MIMO systems. The proposed neuro-fuzzy control determined to a input-output membership function in fuzzy control and neural networks constructed to improve through learning of input-output membership functions determined in fuzzy control.

  • PDF

Validation on Conceptual Design and Performance Analyses for Compound Rotorcrafts Considering Lift-offset

  • Go, Jeong-In;Park, Jae-Sang;Choi, Jong-Soo
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.1
    • /
    • pp.154-164
    • /
    • 2017
  • This work conducts a validation study for the XH-59A helicopter using a rigid coaxial rotor system in order to establish the techniques of the conceptual design and performance analysis for the lift-offset compound rotorcraft. As a tool for conceptual design and performance analysis, NDARC (NASA Design and Analysis of Rotorcraft) is used for the present study. An assumed mission profile is considered for the conceptual design of the XH-59A. As a validation result of the design, the dimensions and weight of the XH-59A are appropriately designed when compared to the target values since the relative error is less than 0.5%. Then, performance analyses are conducted for the designed XH-59A model with and without auxiliary propulsion in hover and forward flight conditions. The present analyses show good validity since the prediction results compare well with both the flight test and previous analyses. Therefore, the techniques for the conceptual design and performance analysis of the lift-offset compound helicopter are overall considered to be appropriately established. In addition, this study investigates the influence of the lift-offset on the rotor effective lift-to-drag ratio of the XH-59A helicopter with auxiliary propulsion. As a result, the improvement of the rotor effective lift-to-drag ratio can be obtained by appropriately increasing the lift-offset in high-speed flight.

Rotating Frequency Analysis of a Helicopter Rotor Blade with Swpt Tips (후퇴각 날개끝이 있는 헬리콥터 로터깃의 회전주파수 해석)

  • ;Yang, Wei Dong
    • Journal of KSNVE
    • /
    • v.10 no.2
    • /
    • pp.229-239
    • /
    • 2000
  • To reduce the drag rise on the advancing helicopter rotor blade tips, the tip of the blade is modified to have sweep, anhedral and pretwist. The equations of motion of rotor blade with these tip angles were derived using Hamilton principle, programmed using FORTRAN and named as ARMDAS(Advanced Rotorcraft Multidisplinary Design and Analysis System). Rotating frequency analysis of rotor blades with swept tipe was performed that is necessary in conceptual and preliminary design phases of the helicopter design. Vibration analysis of non-rotating blades was also accomplished and compared with MSC/NASTRAN resutls for the basis of comparison with the vibration test data. The rotating frequency analysis of blades with an actual rotor blade data was also performed to verify coded program and to check the possibility of a resonance of an actual rotor blade at the specific rotating speed.

  • PDF

Understanding Robust Design with Paper Helicopter Experiment (종이 헬리콥터 실험을 통한 강건설계의 이해)

  • Byun, Jai-Hyun;Kim, Yong Tae;Lee, Min Ji
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.39 no.5
    • /
    • pp.374-382
    • /
    • 2013
  • Robust design method developed by Genichi Taguchi has been very popular since the 1980s and there have been many academic and applied research works on this topic. However, college students and engineers in companies have had difficulty in understanding the method. This paper presents a procedure to implement the robust design method by an easy-to-execute paper helicopter experiment. A crossed array was adopted, which consists of a resolution IV fractional factorial design with 6 control factors and a factorial design with 3 noise factors. Three performance measures were analyzed; signal-to-noise ratio, mean, and standard deviation of the falling time of the paper helicopter that is to be maximized. Control-noise interaction plots are also given to evaluate the degree of the sensitivity of each level of the control factors to the noise factors. The procedure presented in this paper can be helpful to those who want to have basic knowledge in the robust design method.

Development of an Integrated High Fidelity Helicopter and Engine Simulation for Control System Design (헬리콥터용 가스터빈 엔진의 제어기 설계를 위한 고충실도 통합 시뮬레이션 개발)

  • Choi, Kee-Young;Jang, Se-Ah;Choi, Ki-Young;Eom, Joo-Sang;Lee, Beom-Suk;Son, Young-Chang;Ryu, Hyeok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.3
    • /
    • pp.249-257
    • /
    • 2010
  • Full authority digital engine control systems for gas turbine engines are replacing conventional mechanical control units rapidly. However, setting up design processes of controllers for high performance helicopter engines are not well known because of the complexity of the total system. This paper presents a high fidelity helicopter and engine simulation for control system design and analysis. Using this environment, a feedforward schedule was set up for a utility helicopter. The total engine simulation with the new controller showed better or equal performance compared to the total engine simulation with the pre-existing controller.

Design of hovering flight controller for a model helicopter using a microcontroller (마이크로콘트롤러를 이용한 모형헬리콥터 정지비행 제어기 설계)

  • 박현식;이준호;이은호;이교일
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.185-188
    • /
    • 1993
  • The goal of this paper is to develop an on-board controller for a model helicopter's hovering attitude control, using i8096 one-chip microcontroller. Required controller algorithm is programmed in ASM-96 assembly language and downloaded into an i8096 microcontroller. The performance of hovering flight using this system is verified by experiments with the model helicopter mounted on an instrumented flight stand where 3 potentiometers and an optical proximity sensor measure te attitude and main rotor speed of the helicopter.

  • PDF

Design of attitude estimation for RC Helicopter by sensor fusion (센서융합에 의한 모형헬리콥터의 자세 추정기 설계)

  • Jung, Won-Jae;Park, Moon-Soo;Lee, Kwang-Won
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2317-2319
    • /
    • 2001
  • This paper presents a sensor fusion algorithm for the RC helicopter which uses a complementary filter. To measure the attitude angle of the helicopter, 3rate gyroscopes and a 3-axis accelerometer are mounted on the helicopter. The signals from them are passed though a complementary filter to produce estimation outputs. Experiments show that designed system is effective for the attitude estimation.

  • PDF

A Study of the Conceptual Design of Medium Size Utility Helicopter Rotor System (중형 헬리콥터 로터 시스템 개념설계 연구)

  • Kim, June-Mo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.8 no.3 s.22
    • /
    • pp.33-41
    • /
    • 2005
  • This paper describes the conceptual design of medium size helicopter rotor system. Based on assumed design requirements, trade-off study for rotor configuration has been conducted in terms of rotor tip speed, disk loading, blade area, solidity, etc for estimated primary mission gross weight. For the main rotor, four-blade and five-blade rotors are studied with the conventional tail rotor. The performance analysis for baseline configuration is conducted using a helicopter performance analysis program. The analysis shows design results satisfy the design requirements.