• Title/Summary/Keyword: Hedgehog pathway

Search Result 28, Processing Time 0.019 seconds

The Effects of Korean Cucurbitaceous Plants on the Alkaline Phosphatase Activity Associated with Sonic Hedgehog Pathway

  • Lee, Hwa Jin
    • Korean Journal of Plant Resources
    • /
    • v.26 no.6
    • /
    • pp.673-677
    • /
    • 2013
  • In order to examine the effects of Korean cucurbitaceous plants on sonic hedgehog pathway and growth of cancer cells with over-activated hedgehog pathway, we measured the sonic hedgehog conditioned medium (shh-CM) induced alkaline phosphatase (ALP) activity and cell viability of pancreatic cancer cell lines by treatment of cucurbitaceous plants. Among the tested cucurbitaceous plants, Actinostemma lobatum Maxim, Cucumis sativus L., Momordica charantia L., Schizopepon bryoniaefolius Maxim and Trichosanthes kirilowii Max, var. japonica Kitam showed the potent inhibitory effects (> 50 % at $20{\mu}g/mL$) on shh-CM induced ALP activity. We also evaluated the cell viability of pancreatic cancer cells treated with the cucurbitaceous plants. The tested cucurbitaceous plants showed the very weak effects on cancer cell proliferation but, T. kirilowii Max, var. japonica Kitam presented the inhibitory effect of 72.7 % on the proliferation of pancreatic cancer cells at $20{\mu}g/mL$. Taken together, we screened the effects of Korean cucurbitaceous plants on shh-CM induced ALP activity and cell viability of pancreatic cancers to search for the modulators of the hedgehog pathway leading to the inhibition of cancer cell proliferation. T. kirilowii Max, var. japonica Kitam, among the tested cucurbitaceous plants, showed the inhibitory effects on the shh-CM induced ALP activity and the proliferation of pancreatic cancer cells.

Cyclopamine, an Antagonist of Hedgehog (Hh) Signaling Pathway, Reduces the Hatching Rate of Parthenogenetic Murine Embryos

  • Park, Jaehyun;Moon, Jeonghyeon;Min, Sol;Chae, Stephan;Roh, Sangho
    • Journal of Embryo Transfer
    • /
    • v.33 no.4
    • /
    • pp.237-243
    • /
    • 2018
  • Hedgehog (Hh) pathway plays a key role in development from invertebrate to vertebrate. It is known to be involved in cell differentiation, polarity, proliferation, including the development of vertebrate limb and the establishment of flies' body plan. To investigate how the regulation of Hh pathway affects the development of parthenogenetic murine embryos, the parthenogenetically activated murine embryos were treated with either cyclopamine (Cyc), an antagonist of Hh pathway, or purmorphamine, an agonist of Hh pathway. While Cyc did not affect the blastocyst formation and its total cell number, the chemical reduced the hatching rate of embryos and the expression levels of Fn1 mRNA. The results of the present study show the possibility that Cyc may affect the development of embryos at blastocyst stage by blocking Hh pathway and this may cause detrimental effect to the embryos at peri-, and post-implantation stages.

The role of sonic hedgehog signaling pathway in in vitro oocyte maturation

  • Lee, Sanghoon;Cho, Jongki
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.36 no.4
    • /
    • pp.183-188
    • /
    • 2021
  • In vitro maturation (IVM) of oocytes is the procedure where the immature oocytes are cultivated in a laboratory until they are mature. Since IVM oocytes generally have low developmental competence as compared to those matured in vivo, development of an optimal IVM culture system by fine-tuning culture conditions is crucial to maintain high quality. In-depth knowledge and a deep understanding of the in vivo physiology of oocyte maturation are pre-requisites to accomplish this. Within ovarian follicles, various signaling pathways that drive oocyte development and maturation regulate interaction between oocytes and surrounding somatic cells. This review discusses the sonic hedgehog (SHH) signaling pathway, which has been demonstrated to be intimately involved in folliculogenesis and oocyte maturation. Advances in elucidating the role of the SHH signaling pathway in oocyte maturation will aid attempts to improve the current inferior in vitro oocyte maturation system.

Methanol Extract of Cinnamomum cassia Represses Cellular Proliferation and Gli-mediated Transcription in PANC-1 Human Pancreatic Cancer Cells

  • Lee, Hwa Jin
    • Natural Product Sciences
    • /
    • v.20 no.3
    • /
    • pp.170-175
    • /
    • 2014
  • Twenty five methanolic plant extracts were investigated to determine the anticancer activity against sonic hedgehog (shh)/Gli signaling pathway dependent cancer, PANC-1 human pancreatic cancer cells, through three screening programs. All extracts were inspected their inhibitory properties on sonic hedgehog-conditioned medium (shh-CM) induced alkaline phosphatase (ALP) activity in C3H10T1/2 mouse mesenchymal stem cells to examine whether the plant extracts affect the shh/Gli signaling pathway. Next, plant extracts were screened the ability to suppress the cell proliferation of PANC-1 human pancreatic cancer cells. Finally, active plant extracts from the two screening systems were evaluated for the suppressive effect on Gli-mediated transcriptional activity in PANC-1 cells. Among active plants, Cinnamomum cassia suppressed Gli-mediated transcriptional activity leading to the down-regulated expression of Gli-target genes such as Gli-1 and Patched-1 (Ptch-1). This study provides the consideration for the important role of natural products in drug discovery process as well as the basis for the further analysis of active plant and potential identification of novel bioactive compounds as inhibitors of Gli and therapeutic candidates against shh/Gli signaling pathway dependent cancers.

Identification of Osteogenic Purmorphamine Derivatives

  • Lee, Sung-Jin;Lee, Hak-Kyo;Cho, Sung Yun;Choi, Joong-Kwon;Shin, Hea Kyeong;Kwak, Eun-Jung;Cho, Mi-Ran;Kim, Hye-Ryun;Kim, Seung-Ryol;Kim, Yong-Min;Park, Kyoung-Jin;Choi, Joong-Kook
    • Molecules and Cells
    • /
    • v.26 no.4
    • /
    • pp.380-386
    • /
    • 2008
  • During embryonic and cancer development, the Hedgehog family of proteins, including Sonic Hedgehog, play an important role by relieving the inhibition of Smo by Ptc, thus activating the Smo signaling cascade. Recently, a purine compound, purmorphamine, has been reported to target the Hedgehog signaling pathway by interacting with Smo. Interestingly, both Sonic Hedgehog and purmorphamine were found to promote the osteogenic differentiation of mouse chondroprogenitor cells. However, there is insufficient information as to how the activation of this seemingly unrelated signaling pathway, either by Sonic Hedgehog or purmorphamine, contributes to osteogenesis. Using alkaline phosphatase assays, we screened 125 purmorphamine derivatives from the Korea Chemical Bank for effects on the differentiation of preosteoblast C2C12 cells. Here, we report that two purine derivatives modulate ALP activity as well as the expression of genes whose expression is known or suggested to be involved in osteogenesis.

Effect of the hedgehog signaling pathway on hair formation-related cells

  • Park, Jaehyun;Park, Sangkyu;Seo, Jeongmin;Roh, Sangho
    • International Journal of Oral Biology
    • /
    • v.44 no.4
    • /
    • pp.144-151
    • /
    • 2019
  • Alopecia has emerged as one of the biggest interests in modern society. Many studies have focused on the treatment of alopecia, such as transplantation of hair follicles or inhibition of the androgen pathway. Hair growth is achieved through proper proliferation of the components such as keratinocytes and dermal papilla cells (DPCs), movement, and interaction between the two cells. The present study examined the effect of the hedgehog (Hh) signaling pathway, which is an important and fundamental signal in the cell, on the morphology and the viability of human keratinocytes and DPCs. Upregulation of Hh signaling caused a morphological change and an increase in epithelium-mesenchymal transition-related gene expression but reduced the viability of keratinocytes, while the alteration of Hh signaling did not cause any change in DPCs. The results show the possibility that the regulation of Hh signaling can be applied for the treatment of alopecia.

Inhibitory Effect of Lactic Acid Bacteria-fermented Chrysanthemum indicum L. on Adipocyte Differentiation through Hedgehog Signaling (감국의 유산균 발효물이 hedgehog 신호를 통한 지방구세포 분화 억제효과)

  • Choi, Jae Young;Lim, Jong Seok;Sim, Bo Ram;Yang, Yung Hun
    • Journal of Life Science
    • /
    • v.30 no.6
    • /
    • pp.532-541
    • /
    • 2020
  • In this study, we describe the inhibition of adipocyte differentiation by the lactic acid bacteria (LAB) fermentation product of Chrysanthemum indicum L. (CI) extract to control obesity. Preparation of LAB-fermented products was performed to overcome the cytotoxicity of CI extract. During fermentation and 3T3-L1 cell line experiment, cytotoxicity was not induced in the CI fermentation products over 1 day in culture. Fermented materials from highly proliferative cultures were selected for treatment of 3T3-L1 cells and for comparison with unfermented control groups. Cell survival and undifferentiated cell populations were decreased differentiation population in all experimental groups compared with controls, as measured using fluorescence-activated cell sorting analysis. Akt pathway activity increased upon treatment with these fermented extracts in 3T3-L1 cells. Gli2 depleted at the protein level in association with adipocyte differentiation. LAB KCTC 3115- and 3109-fermented extract treatment caused controlled Gli2 protein accumulation. Moreover, KCTC 3115 and 3109 were found to reduce C/EBPα and FAS was depleted, whereas pACC was increased at the protein level upon treatment with the fermentation products of each of the four LAB used in this study. With Lactococcus lactis subsp. lactis KCTC 3115 fermentation, the regulation of adipose differentiation and hedgehog signaling were also suppressed, thereby inhibiting the differentiation of progenitor cells. The basis for the activation of hedgehog signaling may provide insights into the treatment of obesity and the inhibition of adipocyte differentiation.

Expression and Clinical Significance of Hedgehog Signaling Pathway Related Components in Colorectal Cancer

  • Wang, Hong;Li, Yu-Yuan;Wu, Ying-Ying;Nie, Yu-Qiang
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.5
    • /
    • pp.2319-2324
    • /
    • 2012
  • Aim: To investigate the expression of three components of the Hedgehog (Hh) signaling pathway (SHH, SMO and GLI1) in human colorectal cancer (CRC) tissues and evaluate their association with clinicopathologic characteristics of the patients. Methods: Fresh tumor tissues and matched tissues adjacent to the tumor were collected from 43 CRC patients undergoing surgery. Normal colorectal tissues from 20 non-CRC cases were also sampled as normal controls. The expression of SHH, SMO, GLI1 mRNAs was assessed by RT-PCR and proteins were detected by immunohistochemical staining. Associations with clinicopathological characteristics of patients were analyzed. Results: SHH mRNA was expressed more frequently in tumor tissues than in normal tissues, but the difference did not reach significance in comparison to that in the adjacent tissues. SMO and GLI1 mRNAs were expressed more frequently in tumor tissues than in both adjacent andnormal tissues. The expression intensities of SHH, SMO, GLI1 mRNA in tumor tissues were significantly higher than those in adjacent tissues and normal tissues. Proteins were also detected more frequently in tumors than other tissues. No significant links were apparent with gender, age, location, degree of infiltration or Dukes stage. Conclusion: Positive rates and intensities of mRNA and protein expression of Hh signaling pathway related genes SHH, SMO, GLI1 were found to be significantly increased in CRC tissues. However, over-expression did not appear to be associated with particular clinicopathological characteristics.

Cell cycle-related kinase is a crucial regulator for ciliogenesis and Hedgehog signaling in embryonic mouse lung development

  • Lee, Hankyu;Ko, Hyuk Wan
    • BMB Reports
    • /
    • v.53 no.7
    • /
    • pp.367-372
    • /
    • 2020
  • Cell cycle-related kinase (CCRK) has a conserved role in ciliogenesis, and Ccrk defects in mice lead to developmental defects, including exencephaly, preaxial polydactyly, skeletal abnormalities, retinal degeneration, and polycystic kidney. Here, we found that Ccrk is highly expressed in mouse trachea and bronchioles. Ccrk mutants exhibited pulmonary hypoplasia and abnormal branching morphogenesis in respiratory organ development. Furthermore, we demonstrated that Ccrk mutant lungs exhibit not only impaired branching morphogenesis but also a significant sacculation deficiency in alveoli associated with reduced epithelial progenitor cell proliferation. In pseudoglandular stages, Ccrk mutant lungs showed a downregulation of Hedgehog (Hh) signaling and defects in cilia morphology and frequency during progenitor-cell proliferation. Interestingly, we observed that activation of the Hh signaling pathway by small-molecule smoothened agonist (SAG) partially rescued bud morphology during branch bifurcation in explants from Ccrk mutant lungs. Therefore, CCRK properly regulates respiratory airway architecture in part through Hh-signal transduction and ciliogenesis.