Browse > Article

Identification of Osteogenic Purmorphamine Derivatives  

Lee, Sung-Jin (Department of Animal Life Resource Science, Kangwon National University)
Lee, Hak-Kyo (Gyeonggi Regional Research Center, Hankyong National University)
Cho, Sung Yun (Drug Discovery Division, Korea Research Institute of Chemical Technology)
Choi, Joong-Kwon (Drug Discovery Division, Korea Research Institute of Chemical Technology)
Shin, Hea Kyeong (Department of Plastic Surgery, College of Medicine, Dongguk University)
Kwak, Eun-Jung (Department of Biochemistry, College of Medicine, Chungbuk National University)
Cho, Mi-Ran (Department of Biochemistry, College of Medicine, Chungbuk National University)
Kim, Hye-Ryun (Department of Biochemistry, College of Medicine, Chungbuk National University)
Kim, Seung-Ryol (Department of Biochemistry, College of Medicine, Chungbuk National University)
Kim, Yong-Min (Department of Orthopaedic Surgery, College of Medicine, Chungbuk National University)
Park, Kyoung-Jin (Department of Orthopaedic Surgery, College of Medicine, Chungbuk National University)
Choi, Joong-Kook (Department of Biochemistry, College of Medicine, Chungbuk National University)
Abstract
During embryonic and cancer development, the Hedgehog family of proteins, including Sonic Hedgehog, play an important role by relieving the inhibition of Smo by Ptc, thus activating the Smo signaling cascade. Recently, a purine compound, purmorphamine, has been reported to target the Hedgehog signaling pathway by interacting with Smo. Interestingly, both Sonic Hedgehog and purmorphamine were found to promote the osteogenic differentiation of mouse chondroprogenitor cells. However, there is insufficient information as to how the activation of this seemingly unrelated signaling pathway, either by Sonic Hedgehog or purmorphamine, contributes to osteogenesis. Using alkaline phosphatase assays, we screened 125 purmorphamine derivatives from the Korea Chemical Bank for effects on the differentiation of preosteoblast C2C12 cells. Here, we report that two purine derivatives modulate ALP activity as well as the expression of genes whose expression is known or suggested to be involved in osteogenesis.
Keywords
alkaline phosphatase assay; C2C12 preosteoblasts; osteogenesis; purmorphamine; Sonic hedgehog;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
Times Cited By Web Of Science : 3  (Related Records In Web of Science)
연도 인용수 순위
1 Iwamoto, M., Enomoto-Iwamoto, M., and Kurisu, K. (1999). Actions of hedgehog proteins on skeletal cells. Crit. Rev. Oral. Biol. Med. 10, 477-486   DOI
2 Matsuo, N., Tanaka, S., Gordon, M.K., Koch, M., Yoshioka, H., and Ramirez, F. (2006). CREB-AP1 protein complexes regulate transcription of the collagen XXIV gene (Col24a1) in osteoblasts. J. Biol. Chem. 281, 5445-5452   DOI   ScienceOn
3 Perrimon, N. (1995). Hedgehog and beyond. Cell 80, 517-520   DOI   ScienceOn
4 Merlo, G.R., Zerega, B., Paleari, L., Trombino, S., Mantero, S., and Levi, G. (2000). Multiple functions of Dlx genes. Int. J. Dev. Biol. 44, 619-626
5 Harris, S.E., Guo, D., Harris, M.A., Krishnaswamy, A., and Lichtler, A. (2003). Transcriptional regulation of BMP-2 activated genes in osteoblasts using gene expression microarray analysis: role of Dlx2 and Dlx5 transcription factors. Front Biosci. 8, S1249-1265   DOI
6 Beloti, M.M., Bellesini, L.S., and Rosa, A.L. (2005). Purmorphamine enhances osteogenic activity of human osteoblasts derived from bone marrow mesenchymal cells. Cell Biol. Int. 29, 537-541   DOI   ScienceOn
7 Cancedda, R., Castagnola, P., Cancedda, F.D., Dozin, B., and Quarto, R. (2000). Developmental control of chondrogenesis and osteogenesis. Int. J. Dev. Biol. 44, 707-714
8 Fanganiello, R.D., Sertie, A.L., Reis, E.M., Yeh, E., Oliveira, N.A., Bueno, D.F., Kerkis, I., Alonso, N., Cavalheiro, S., Matsushita, H., et al. (2007). Apert p.Ser252Trp mutation in FGFR2 alters osteogenic potential and gene expression of cranial periosteal cells. Mol. Med. 13, 422-442
9 Hammerschmidt, M., Brook, A., and McMahon, A.P. (1997). The world according to hedgehog. Trends Genet. 13, 14-21   DOI   ScienceOn
10 Tataria, M., Quarto, N., Longaker, M.T., and Sylvester, K.G. (2006). Absence of the p53 tumor suppressor gene promotes osteogenesis in mesenchymal stem cells. J. Pediatr. Surg. 41, 624- 632   DOI   ScienceOn
11 Lee, J.S., Thomas, D.M., Gutierrez, G., Carty, S.A., Yanagawa, S., and Hinds, P.W. (2006). HES1 cooperates with pRb to activate RUNX2-dependent transcription. J. Bone Miner. Res. 21, 921- 933   DOI   ScienceOn
12 Yamamoto, N., Akiyama, S., Katagiri, T., Namiki, M., Kurokawa, T., and Suda, T. (1997). Smad1 and smad5 act downstream of intracellular signalings of BMP-2 that inhibits myogenic differentiation and induces osteoblast differentiation in C2C12 myoblasts. Biochem. Biophys. Res. Commun. 238, 574-580   DOI   ScienceOn
13 Wu, X., Itoh, N., Taniguchi, T., Nakanishi, T., Tatsu, Y., Yumoto, N., and Tanaka, K. (2003). Zinc-induced sodium-dependent vitamin C transporter 2 expression: potent roles in osteoblast differenttiation. Arch. Biochem. Biophys. 420, 114-120   DOI   ScienceOn
14 Hall, B.K., and Miyake, T. (1992). The membranous skeleton: the role of cell condensations in vertebrate skeletogenesis. Anat. Embryol. 186, 107-124
15 Kronenberg, H.M. (2003). Developmental regulation of the growth plate. Nature 423, 332-336   DOI   ScienceOn
16 Shum, L., and Nuckolls, G. (2002). The life cycle of chondrocytes in the developing skeleton. Arthritis Res. 4, 94-106
17 Cohen, M.M. Jr. (2006). The new bone biology: Pathologic, molecular, and clinical correlates. Am. J. Med. Genet. A 140, 2646-2706
18 Karsenty, G., and Wagner, E.F. (2002). Reaching a genetic and molecular understanding of skeletal development. Dev. Cell 2, 389-406   DOI   ScienceOn
19 Akiyama, H., Chaboissier, M.C., Martin, J.F., Schedl, A., and de Crombrugghe, B. (2002). The transcription factor Sox9 has essential roles in successive steps of the chondrocyte differentiation pathway and is required for expression of Sox5 and Sox6. Genes Dev. 16, 2813-2828   DOI   ScienceOn
20 James, C.G., Appleton, C.T., Ulici, V., Underhill, T.M., and Beier, F. (2005). Microarray analyses of gene expression during chondrocyte differentiation identifies novel regulators of hypertrophy. Mol. Biol. Cell 16, 5316-5333   DOI   ScienceOn
21 Lee, S.K., Lee, Z.H., Lee, S.J., Ahn, B.D., Kim, Y.J., Lee, S.H., and Kim, J.W. (2008). DLX3 mutation in a new family and its phenotypic variations. J. Dent. Res. 87, 354-357   DOI   ScienceOn
22 Chen, S., Zhang, Q., Wu, X., Schultz, P.G., and Ding, S. (2004). Dedifferentiation of lineage-committed cells by a small molecule. J. Am. Chem. Soc. 126, 410-411   DOI   ScienceOn
23 Sinha, S., and Chen, J.K. (2006). Purmorphamine activates the Hedgehog pathway by targeting Smoothened. Nat. Chem. Biol. 2, 29-30   DOI   ScienceOn
24 Wu, X., Ding, S., Ding, Q., Gray, N.S., and Schultz, P.G. (2002). A small molecule with osteogenesis-inducing activity in multipotent mesenchymal progenitor cells. J. Am. Chem. Soc. 124, 14520-14521   DOI   ScienceOn
25 Wu, X., Walker, J., Zhang, J., Ding, S., and Schultz, P.G. (2004). Purmorphamine induces osteogenesis by activation of the hedgehog signaling pathway. Chem. Biol. 11, 1229-1238   DOI   ScienceOn
26 Gibert, S.F. (2006). Intramembranous ossification. Dev. Biol. 8th eds., 420-421
27 Lengner, C.J., Steinman, H.A., Gagnon, J., Smith, T.W., Henderson, J.E., Kream, B.E., Stein, G.S., Lian, J.B., and Jones, S.N. (2006). Osteoblast differentiation and skeletal development are regulated by Mdm2-p53 signaling. J. Cell Biol. 172, 909-921   DOI   ScienceOn
28 Spinella-Jaegle, S., Rawadi, G., Kawai, S., Gallea, S., Faucheu, C., Mollat, P., Courtois, B., Bergaud, B., Ramez, V., Blanchet, A.M., et al. (2001). Sonic hedgehog increases the com-mitment of pluripotent mesenchymal cells into the osteoblastic lineage and abolishes adipocytic differentiation. J. Cell. Sci. 114, 2085-2094
29 Sapkota, G., Alarcon, C., Spagnoli, F.M., Brivanlou, A.H., and Massague, J. (2007). Balancing BMP signaling through integrated inputs into the Smad1 linker. Mol. Cell 25, 441-454   DOI   ScienceOn
30 Suh, J.H., Lee, H.W., Lee, J.W., and Kim, J.B. (2008). Hes1 stimulates transcriptional activity of Runx2 by increasing protein stabilization during osteoblast differentiation. Biochem. Biophys. Res. Commun. 367, 97-102   DOI   ScienceOn
31 Eames, B.F., de la, F.L., and Helms, J.A. (2003). Molecular ontogeny of the skeleton. Birth Defects Res. C. Embryo. Today 69, 93-101   DOI   ScienceOn