DOI QR코드

DOI QR Code

Effect of the hedgehog signaling pathway on hair formation-related cells

  • Park, Jaehyun (Cellular Reprogramming and Embryo Biotechnology Laboratory, Dental Research Institute, School of Dentistry, Seoul National University) ;
  • Park, Sangkyu (Cellular Reprogramming and Embryo Biotechnology Laboratory, Dental Research Institute, School of Dentistry, Seoul National University) ;
  • Seo, Jeongmin (Biomedical Research Institute, NeoRegen Biotech Co. Ltd.) ;
  • Roh, Sangho (Cellular Reprogramming and Embryo Biotechnology Laboratory, Dental Research Institute, School of Dentistry, Seoul National University)
  • Received : 2019.11.19
  • Accepted : 2019.12.02
  • Published : 2019.12.31

Abstract

Alopecia has emerged as one of the biggest interests in modern society. Many studies have focused on the treatment of alopecia, such as transplantation of hair follicles or inhibition of the androgen pathway. Hair growth is achieved through proper proliferation of the components such as keratinocytes and dermal papilla cells (DPCs), movement, and interaction between the two cells. The present study examined the effect of the hedgehog (Hh) signaling pathway, which is an important and fundamental signal in the cell, on the morphology and the viability of human keratinocytes and DPCs. Upregulation of Hh signaling caused a morphological change and an increase in epithelium-mesenchymal transition-related gene expression but reduced the viability of keratinocytes, while the alteration of Hh signaling did not cause any change in DPCs. The results show the possibility that the regulation of Hh signaling can be applied for the treatment of alopecia.

Keywords

References

  1. Venkataram A, Mysore V. Logic of hair transplantation. J Cutan Aesthet Surg 2018;11:169-72. doi: 10.4103/JCAS.JCAS_183_18.
  2. Bernstein RM, Rassman WR. Follicular transplantation. Patient evaluation and surgical planning. Dermatol Surg 1997;23:771-84; discussion 801-5. doi: 10.1111/j.1524-4725.1997.tb00417.x.
  3. Goren A, Naccarato T. Minoxidil in the treatment of androgenetic alopecia. Dermatol Ther 2018;31:e12686. doi: 10.1111/dth.12686.
  4. Mackay-Wiggan J, Jabbari A, Nguyen N, Cerise JE, Clark C, Ulerio G, Furniss M, Vaughan R, Christiano AM, Clynes R. Oral ruxolitinib induces hair regrowth in patients with moderateto-severe alopecia areata. JCI Insight 2016;1:e89790. doi:10.1172/jci.insight.89790.
  5. White SD, Yager JA. Resident dendritic cells in the epidermis: Langerhans cells, Merkel cells and melanocytes. Vet Dermatol 1995;6:1-8. doi: 10.1111/j.1365-3164.1995.tb00034.x.
  6. Losquadro WD. Anatomy of the skin and the pathogenesis of nonmelanoma skin cancer. Facial Plast Surg Clin North Am 2017;25:283-9. doi: 10.1016/j.fsc.2017.03.001.
  7. Wikramanayake TC, Stojadinovic O, Tomic-Canic M. Epidermal differentiation in barrier maintenance and wound healing. Adv Wound Care (New Rochelle) 2014;3:272-80. doi:10.1089/wound.2013.0503.
  8. Thangapazham RL, Klover P, Li S, Wang JA, Sperling L, Darling TN. A model system to analyse the ability of human keratinocytes to form hair follicles. Exp Dermatol 2014;23:443-6. doi: 10.1111/exd.12424.
  9. Miyata S, Oda Y, Matsuo C, Kumura H, Kobayashi K. Stimulatory effect of Brazilian propolis on hair growth through proliferation of keratinocytes in mice. J Agric Food Chem 2014;62:11854-61. doi: 10.1021/jf503184s.
  10. Chi W, Wu E, Morgan BA. Dermal papilla cell number specifies hair size, shape and cycling and its reduction causes follicular decline. Development 2013;140:1676-83. doi:10.1242/dev.090662.
  11. Lim CH, Sun Q, Ratti K, Lee SH, Zheng Y, Takeo M, Lee W, Rabbani P, Plikus MV, Cain JE, Wang DH, Watkins DN, Millar S, Taketo MM, Myung P, Cotsarelis G, Ito M. Hedgehog stimulates hair follicle neogenesis by creating inductive dermis during murine skin wound healing. Nat Commun 2018;9:4903. doi: 10.1038/s41467-018-07142-9.
  12. Abe Y, Tanaka N. Roles of the hedgehog signaling pathway in epidermal and hair follicle development, homeostasis, and cancer. J Dev Biol 2017;5:E12. doi: 10.3390/jdb5040012.
  13. Fu M, Lui VC, Sham MH, Pachnis V, Tam PK. Sonic hedgehog regulates the proliferation, differentiation, and migration of enteric neural crest cells in gut. J Cell Biol 2004;166:673-84. doi: 10.1083/jcb.200401077.
  14. Yan R, Peng X, Yuan X, Huang D, Chen J, Lu Q, Lv N, Luo S. Suppression of growth and migration by blocking the Hedgehog signaling pathway in gastric cancer cells. Cell Oncol (Dordr) 2013;36:421-35. doi: 10.1007/s13402-013-0149-1.
  15. Park S, Kim H, Kim K, Roh S. Sonic hedgehog signalling regulates the self-renewal and proliferation of skin-derived precursor cells in mice. Cell Prolif 2018;51:e12500. doi: 10.1111/cpr.12500.
  16. Nusslein-Volhard C, Wieschaus E. Mutations affecting segment number and polarity in Drosophila. Nature 1980;287:795-801. doi: 10.1038/287795a0.
  17. Marigo V, Roberts DJ, Lee SM, Tsukurov O, Levi T, Gastier JM, Epstein DJ, Gilbert DJ, Copeland NG, Seidman CE, Jenkins NA, Seidman JG, Mcmahon AP, Tabin C. Cloning, expression, and chromosomal location of SHH and IHH: two human homologues of the Drosophila segment polarity gene hedgehog. Genomics 1995;28:44-51. doi: 10.1006/geno.1995.1104.
  18. van den Heuvel M, Ingham PW. Smoothened encodes a receptor-like serpentine protein required for hedgehog signalling. Nature 1996;382:547-51. doi: 10.1038/382547a0.
  19. Nakano Y, Guerrero I, Hidalgo A, Taylor A, Whittle JR, Ingham PW. A protein with several possible membrane-spanning domains encoded by the Drosophila segment polarity gene patched. Nature 1989;341:508-13. doi: 10.1038/341508a0.
  20. Kogerman P, Grimm T, Kogerman L, Krause D, Unden AB, Sandstedt B, Toftgard R, Zaphiropoulos PG. Mammalian suppressor-of-fused modulates nuclear-cytoplasmic shuttling of Gli-1. Nat Cell Biol 1999;1:312-9. doi: 10.1038/13031.
  21. Marigo V, Davey RA, Zuo Y, Cunningham JM, Tabin CJ. B Biochemical evidence that patched is the Hedgehog receptor. Nature 1996;384:176-9. doi: 10.1038/384176a0.
  22. Ruiz i Altaba A. Catching a Gli-mpse of Hedgehog. Cell 1997;90:193-6. doi: 10.1016/s0092-8674(00)80325-6.
  23. Bar EE, Chaudhry A, Lin A, Fan X, Schreck K, Matsui W, Piccirillo S, Vescovi AL, DiMeco F, Olivi A, Eberhart CG. Cyclopamine-mediated hedgehog pathway inhibition depletes stemlike cancer cells in glioblastoma. Stem Cells 2007;25:2524-33. doi: 10.1634/stemcells.2007-0166.
  24. Shigunov P, Balvedi LT, Santos MDM, Herai RH, de Aguiar AM, Dallagiovanna B. Crosstalk between Hedgehog pathway and energy pathways in human adipose-derived stem cells: a deep sequencing analysis of polysome-associated RNA. Sci Rep 2018;8:8411. doi: 10.1038/s41598-018-26533-y.
  25. Pan HC, Wu YT, Shen SC, Wang CC, Tsai MS, Cheng FC, Lin SZ, Chen CW, Liu CS, Su HL. Characterization of axon formation in the embryonic stem cell-derived motoneuron. Cell Transplant 2011;20:493-502. doi: 10.3727/096368910X536464.
  26. Nelson CM, Khauv D, Bissell MJ, Radisky DC. Change in cell shape is required for matrix metalloproteinase-induced epithelial-mesenchymal transition of mammary epithelial cells. J Cell Biochem 2008;105:25-33. doi: 10.1002/jcb.21821.
  27. St-Jacques B, Dassule HR, Karavanova I, Botchkarev VA, Li J, Danielian PS, McMahon JA, Lewis PM, Paus R, McMahon AP. Sonic hedgehog signaling is essential for hair development. Curr Biol 1998;8:1058-68. doi: 10.1016/s0960-9822(98)70443-9.
  28. Oro AE, Higgins K. Hair cycle regulation of Hedgehog signal reception. Dev Biol 2003;255:238-48. doi: 10.1016/s0012-1606(02)00042-8.
  29. Matsumura H, Mohri Y, Binh NT, Morinaga H, Fukuda M, Ito M, Kurata S, Hoeijmakers J, Nishimura EK. Hair follicle aging is driven by transepidermal elimination of stem cells via COL17A1 proteolysis. Science 2016;351:aad4395. doi: 10.1126/science.aad4395.
  30. Paladini RD, Saleh J, Qian C, Xu GX, Rubin LL. Modulation of hair growth with small molecule agonists of the hedgehog signaling pathway. J Invest Dermatol 2005;125:638-46. doi:10.1111/j.0022-202X.2005.23867.x.
  31. Stenn KS, Paus R. Controls of hair follicle cycling. Physiol Rev 2001;81:449-94. doi: 10.1152/physrev.2001.81.1.449.
  32. Sato N, Leopold PL, Crystal RG. Induction of the hair growth phase in postnatal mice by localized transient expression of Sonic hedgehog. J Clin Invest 1999;104:855-64. doi: 10.1172/JCI7691.
  33. Wang LC, Liu ZY, Gambardella L, Delacour A, Shapiro R, Yang J, Sizing I, Rayhorn P, Garber EA, Benjamin CD, Williams KP, Taylor FR, Barrandon Y, Ling L, Burkly LC. Regular articles: conditional disruption of hedgehog signaling pathway defines its critical role in hair development and regeneration. J Invest Dermatol 2000;114:901-8. doi: 10.1046/j.1523-1747.2000.00951.x.
  34. Han SW, Roman J. Fibronectin induces cell proliferation and inhibits apoptosis in human bronchial epithelial cells: prooncogenic effects mediated by PI3-kinase and NF-kappa B. Oncogene 2006;25:4341-9. doi: 10.1038/sj.onc.1209460.
  35. Ivaska J. Vimentin: central hub in EMT induction? Small GTPases 2011;2:51-3. doi: 10.4161/sgtp.2.1.15114.
  36. Rile N, Liu Z, Gao L, Qi J, Zhao M, Xie Y, Su R, Zhang Y, Wang R, Li J, Xiao H, Li J. Expression of vimentin in hair follicle growth cycle of inner Mongolian Cashmere goats. BMC Genomics 2018;19:38. doi: 10.1186/s12864-017-4418-7.
  37. Wang L, Xu W, Cao L, Tian T, Yang M, Li Z, Ping F, Fan W. Differential expression of proteins associated with the hair follicle cycle-proteomics and bioinformatics analyses. PLoS One 2016;11:e0146791. doi: 10.1371/journal.pone.0146791.
  38. Woo WM, Zhen HH, Oro AE. Shh maintains dermal papilla identity and hair morphogenesis via a Noggin-Shh regulatory loop. Genes Dev 2012;26:1235-46. doi: 10.1101/gad.187401.112.
  39. Iida M, Ihara S, Matsuzaki T. Hair cycle-dependent changes of alkaline phosphatase activity in the mesenchyme and epithelium in mouse vibrissal follicles. Dev Growth Differ 2007;49: 185-95. doi: 10.1111/j.1440-169X.2007.00907.x.