Browse > Article
http://dx.doi.org/10.7732/kjpr.2013.26.6.673

The Effects of Korean Cucurbitaceous Plants on the Alkaline Phosphatase Activity Associated with Sonic Hedgehog Pathway  

Lee, Hwa Jin (Department of Natural Medicine Resources, Semyung University)
Publication Information
Korean Journal of Plant Resources / v.26, no.6, 2013 , pp. 673-677 More about this Journal
Abstract
In order to examine the effects of Korean cucurbitaceous plants on sonic hedgehog pathway and growth of cancer cells with over-activated hedgehog pathway, we measured the sonic hedgehog conditioned medium (shh-CM) induced alkaline phosphatase (ALP) activity and cell viability of pancreatic cancer cell lines by treatment of cucurbitaceous plants. Among the tested cucurbitaceous plants, Actinostemma lobatum Maxim, Cucumis sativus L., Momordica charantia L., Schizopepon bryoniaefolius Maxim and Trichosanthes kirilowii Max, var. japonica Kitam showed the potent inhibitory effects (> 50 % at $20{\mu}g/mL$) on shh-CM induced ALP activity. We also evaluated the cell viability of pancreatic cancer cells treated with the cucurbitaceous plants. The tested cucurbitaceous plants showed the very weak effects on cancer cell proliferation but, T. kirilowii Max, var. japonica Kitam presented the inhibitory effect of 72.7 % on the proliferation of pancreatic cancer cells at $20{\mu}g/mL$. Taken together, we screened the effects of Korean cucurbitaceous plants on shh-CM induced ALP activity and cell viability of pancreatic cancers to search for the modulators of the hedgehog pathway leading to the inhibition of cancer cell proliferation. T. kirilowii Max, var. japonica Kitam, among the tested cucurbitaceous plants, showed the inhibitory effects on the shh-CM induced ALP activity and the proliferation of pancreatic cancer cells.
Keywords
Cucurbitaceae; Alkaline phosphatase; Pancreatic cancer; Trichosanthes kirilowii Max; var. japonica Kitam; Hedgehog pathway;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Cheng, T.C., J.F. Lu, J.S. Wang, L.J. Lin, H.I. Kuo and B.H. Chen. 2011. Antiproliferation effect and apoptosis mechanism of prostate cancer cell PC-3 by flavonoids and saponins prepared from Gynostemma pentaphyllum. J. Agric. Food Chem. 59:11319-11329.   DOI   ScienceOn
2 Dakeng, S., S. Duangmano, W. Jiratchariyakul, Y. U-Pratya, O. Bogler and P. Patmasiriwat. 2012. Inhibition of Wnt signaling by cucurbitacin B in breast cancer cells: reduction of Wnt-associated proteins and reduced translocation of galectin-3-mediated ${\beta}$-catenin to the nucleus. J. Cell. Biochem. 113:49-60.   DOI   ScienceOn
3 Hanahan, D. and R.A. Weinberg. 2011. Hallmarks of cancer: the next generation. Cell 144:646-674.   DOI   ScienceOn
4 Ingham, P.W. and A.P. McMahon. 2001. Hedgehog signaling in animal development: paradigms and principles. Genes Dev. 15:3059-3087.   DOI   ScienceOn
5 Jeong, S.M., M.K. Jeong, S.G. Ko, Y.K. Choi, J.H. Park and C.Y. Jun. 2011. Effect of arresting MCF-7 human breast carcinoma cell at G2/M phase of Trichosanthes kirilowii. Kor. J. Ori. Physiol. pathol. 25:857-862 (in Korean).   과학기술학회마을
6 Khan, N., F. Afaq and H. Mukhtar. 2008. Cancer chemoprevention through dietary antioxidants: progress and promise. Antioxid. Redox Signal. 10:475-510.   DOI   ScienceOn
7 Lauth, M., A. Bergstrom, T. Shimokawa and R. Toftgard. 2007. Inhibition of GLI-mediated transcription and tumor cell growth by small-molecule antagonists. Proc. Natl. Acad. Sci USA. 104:8455-8460.   DOI   ScienceOn
8 Lee, C.C. and P. Houghton. 2005. Cytotoxicity of plants from Malaysia and Thailand used traditionally to treat cancer. J. Ethnopharmacol. 100:237-243.   DOI   ScienceOn
9 Li, W., J. Cao, Y. Tang, L. Zhang, Q. Xie, H. Shen and Y. Zhao. 2012. Cyclic bisdesmosides from Actinostemma lobatum MAXIM (Cucurbitaceae) and their in vitro cytotoxicity. Fitoterapia 83:147-152.   DOI   ScienceOn
10 McGovern, P.E., M. Christofidou-Solomidou, W. Wang, F. Dukes, T. Davidson and W.S. El-Deiry. 2010. Anticancer activity of botanical compounds in ancient fermented beverages. Int. J. Oncol. 37:5-14.
11 Nakamura, T., T. Aikawa, M. Iwamoto-Enomoto, M. Iwamoto, Y. Higuchi, M. M. Pacifici, N. Kinto, A. Yamaguchi, S. Noji, K. Kurisu and T. Matsuya. 1997. Induction of osteogenic differentiation by hedgehog proteins. Biochem. Biophys. Res. Commun. 237:465-469.   DOI   ScienceOn
12 Thayer, S.P., M.P. di Magliano, P.W. Heiser, C.M. Nielsen, D.J. Roberts, G.Y. Lauwers, Y.P. Qi, S. Gysin, C.Fernandezdel Castillo, V. Yajnik, B. Antoniu, M. McMahon, A.L. Warshaw and M. Hebrok. 2003. Hedgehog is an early and late mediator of pancratic cancer tumorigenesis. Nature 425:851-856.   DOI   ScienceOn
13 Tian, Y., Y. Xu, Q. Fu and Y. Dong. 2012. Osterix is required for sonic hedgehog-induced osteoblastic MC3T3-E1 cell differentiation. Cell Biochem. Biophys. 64:169-176.   DOI   ScienceOn
14 Xu, F.G., Q.Y. Ma and Z. Wang. 2009. Blockade of hedgehog siganling pathway as a therapeutic strategy for pancreatic cancer. Cancer Lett. 283:119-124.   DOI   ScienceOn
15 Tsuda, N., S. Ishiyama, Y. Li, C.G. Ioannides, J.L. Abbruzzese and D.Z. Chang. 2006. Synthetic microRNA designed to target glioma-associated antigen 1 transcription factor inhibits division and induces late apoptosis in pancreatic tumor cells. Clin. Cancer Res. 12:6557-6564.   DOI   ScienceOn