• Title/Summary/Keyword: Heavy metal contaminated soil

Search Result 379, Processing Time 0.025 seconds

Effects of Extracellular Electron Shuttles on Microbial Iron Reduction and Heavy Metals Release from Contaminated Soils

  • Hwang, Yun Ho;Shim, Moo Joon;Oh, Du Hyun;Yang, Jung-Seok;Kwon, Man Jae
    • Journal of Soil and Groundwater Environment
    • /
    • v.19 no.2
    • /
    • pp.16-24
    • /
    • 2014
  • To test the potential effects of extracellular electron shuttles (EES) on the rate and extent of heavy metal release from contaminated soils during microbial iron reduction, we created anaerobic batch systems with anthraquinone-2,6-disulfonate (AQDS) as a surrogate of EES, and with contaminated soils as mixed iron (hydr)oxides and microbial sources. Two types of soils were tested: Zn-contaminated soil A and As/Pb-contaminated soil B. In soil A, the rate of iron reduction was fastest in the presence of AQDS and > 3500 mg/L of total Fe(II) was produced within 2 d. This suggests that indigenous microorganisms can utilize AQDS as EES to stimulate iron reduction. In the incubations with soil B, the rate and extent of iron reduction did not increase in the presence of AQDS likely because of the low pH (< 5.5). In addition, less than 2000 mg/L of total Fe(II) was produced in soil B within 52 d suggesting that iron reduction by subsurface microorganisms in soil B was not as effective as that in soil A. Relatively high amount of As (~500 mg/L) was released to the aqueous phase during microbial iron reduction in soil B. The release of As might be due to the reduction of As-associated iron (hydr)oxides and/or direct enzymatic reduction of As(V) to As(III) by As-reducing microorganisms. However, given that Pb in liquid phase was < 0.3 mg/L for the entire experiment, the microbial reduction As(V) to As(III) by As-reducing microorganisms has most likely occurred in this system. This study suggests that heavy metal release from contaminated soils can be strongly controlled by subsurface microorganisms, soil pH, presence of EES, and/or nature of heavy metals.

Effects of Industrial By-products on Reducing Heavy Metal Leaching in Contaminated Paddy Soil

  • Oh, Se Jin;Oh, Seung Min;Kim, Sung Chul;Ok, Yong Sik;Ko, Tae Yol;Ji, Won Hyun;Yang, Jae E.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.1
    • /
    • pp.64-71
    • /
    • 2015
  • Soil contamination with arsenic and heavy metals is a worldwide problem. Main objective of this research was to evaluated effects of reducing heavy metal leaching under reduced soil condition amended with industrial by-products. The contaminated soil was amended with 3% (w/w) of limestone (Ls), steel slag (SS) and acid mine drainage sludge (AMDS). Synthetic acid rain ($H_2SO_4:HNO_3=6:4$, pH 5.5 fixed) was used for feeding solution with flow rate of $0.78{\sim}0.88mL\;min^{-1}$. Results showed that similar pH and EC of leachate was observed in all treatments regardless of applied industrial by-products. However, arsenic concentration of leachate increased when industrial by-products were mixed. Meanwhile, concentration of heavy metal in the leachate decreased from 11.3 to 4.59 mg for Cd, from 92.3 to 7.93 mg for Pb, and from 11,716 to 1,788 mg for Zn via immobilization in soil with AMDS amended, respectively. Overall, application of industrial by-products can be an environmentally-friendly way to remediate soil and(or) leachate contaminated with metal(loid)s in metal mine site.

Evaluation of the Heavy Metal Tolerance of Saxifraga stolonifera, Shade Groundcover Plant, to Different Concentrations of Cd, Pb and Zn in Soil (토양 내 카드늄, 납, 아연 농도에 따른 내음성 바위취(Saxifraga stolonifera)의 중금속 내성 평가)

  • Ju, Jin-Hee;Yoon, Young-Han
    • Journal of Environmental Science International
    • /
    • v.19 no.5
    • /
    • pp.585-590
    • /
    • 2010
  • This study attempted to facilitate various groundcover plants, related to phytoremediation material, and advance shade plants with a heavy metal tolerance to contaminated soil in an urban shade space. Saxifraga stolonifera, which has commonly been used a landscape shade plants, was evaluated to determine its heavy metal tolerance to different concentrations(Control, $100mg{\cdot}kg^{-1}$, $250mg{\cdot}kg^{-1}$ and $500mg{\cdot}kg^{-1}$ treatment) of Cd, Pb and Zn in soil. The growth of Saxifraga stolonifera showed no significant tendency after the initial transplantation, but showed distinct changes with the respective treatment heavy metal types and concentrations over time. Especially, severe chlorosis, with more yellowish green leaves, was observed, with inhibition at Cd concentrations greater than $100mg{\cdot}kg^{-1}$. Conversely, no external symptoms or growth retardation were observed with Pb and Zn concentrations less than $500mg{\cdot}kg^{-1}$. Therefore, Saxifraga stolonifera can be applied as a long term phytoremediation species in soil contaminated with low concentrations of heavy metal in urban shade spaces.

Feasibility Test for Phytoremediation of Heavy Metals-Contaminated Soils using Various Stabilizers (중금속 오염토양에 대한 안정화 및 식물상 정화공법의 동시 적용연구)

  • Jeon, Jongwon;Bae, Bumhan;Kim, Younghun
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.3
    • /
    • pp.59-70
    • /
    • 2012
  • In this study, to select the best stabilizer for the heavy metals-contaminated soil from a smelter area during phytoremediation, a plant uptake experiment and a soil stabilization were simultaneously applied using Pteris multifida Poir. and five pre-screened stabilizers(zeolite, Mn dioxide, slag, Ca oxide, and magnetite). The extracted heavy metal was measured and compared using a 3 step sequential extraction for the soil samples. The growth rate of the plant was also evaluated. The stabilizers stabilized heavy metals in soil and reduced the extraction rate. Magnetite and calcium oxide showed better results than other stabilizers. The stabilizers enhanced the growth of the plant. All the heavy metals except for arsenic were concentrated in roots while arsenic was concentrated in leaves of the plant. It is concluded that the stabilizers can minimize the heavy metal release from the contaminated soil during phytoremediation and stimulated the growth of plant. These effects of stabilizers could compensate for some weak points of phytoremediation such as reaching of heavy metals by rainwater.

Transfer Function for Phytoavailable Heavy Metals in Contaminated Agricultural Soils: The Case of The Korean Agricultural Soils Affected by The Abandoned Mining Sites (중금속 오염 농경지의 식물유효태 예측 모델식 개발: 우리나라 폐광산 인근 농경지 토양 사례 연구)

  • Lim, Ga-Hee;Kim, Kye-Hoon;Seo, Byoung-Hwan;Kim, Kwon-Rae
    • Korean Journal of Environmental Agriculture
    • /
    • v.33 no.4
    • /
    • pp.271-281
    • /
    • 2014
  • BACKGROUND: Application of the transfer functions derived from local soil data is necessary in order to develop proper management protocols for agricultural soils contaminated with heavy metals through phytoavailability control of the heavy metals. The aim of this study was to derive the transfer functions of Korean agricultural soils affected by the abandoned mining sites and evaluate suitability of the derived transfer functions. METHODS AND RESULTS: 142 agricultural soils affected by the abandoned mining sites were collected and analyzed. Two extraction methods, including 1 M $NH_4NO_3$ extraction and 0.01 M $Ca(NO_3)_2$ extraction were applied to determine phytoavailable metal pools in soils. Multiple stepwise regression of phytoavailable metal pools against the corresponding total metal concentration and soil properties was conducted to derive suitable transfer functions for estimating phytoavailable heavy metal pools. Applicability of the derived transfer functions was examined by calculating NME and NRMSE. CONCLUSION: Soil pH and organic matter were valid variables for derivation of the transfer functions which were applicable for estimating phytoavailable metal concentrations in the soils being contaminated by heavy metals. In addition, it was confirmed that transfer functions need to be developed based on local soil conditions to accurately estimate heavy metal-phytoavailability.

A Comparison on the Effect of Soil Improvement Methods for the Remediation of Heavy Metal Contaminated Farm Land Soil (중금속 오염 농경지 토양의 복원을 위한 토량개량법의 효과 비교)

  • Yun, Sung-Wook;Jin, Hae-Geun;Kang, Sin-Il;Choi, Seung-Jin;Lim, Young-Cheol;Yu, Chan
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.7
    • /
    • pp.59-70
    • /
    • 2010
  • A long-term field demonstration experiment on selected stabilization methods to reduce the heavy metal mobility in farmland soil contaminated by heavy metals was conducted. The field demonstration experiment was established on the contaminated farmland with wooden plates (thickness = 1 cm), of which the dimension were width = 200 cm, Length = 200 cm, height = 80 cm, filled with treated soil, which was mixed with lime stone and steel refining slag except on control plot. Soil samples in the plots were collected and analyzed during the experiment period (6 months) after the installation of the plots. The field demonstration experiment results showed that the application lime stone at the ratio of 5% was effective for immobilizing heavy metal components in contaminated farmland soil.

Human Risk Assessment of Soil Contaminated with Heavy Metal by Waste Reclaimed in Railway Maintenance Site (철도정비부지 내 매립된 폐기물에 의해 중금속으로 오염된 토양의 인체위해성 평가)

  • Braatz, Hatsue Minato;Jung, Minjung;Moon, Seheum;Park, Jinkyu
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.27 no.3
    • /
    • pp.63-74
    • /
    • 2019
  • This study carried out a human risk assessment of Cu, Pb, Zn and Ni contained in soil contaminated by improperly buried heavy metal wastes in railway sites. The purpose of the human risk assessment is to derive the need for soil remediation and factors that should be considered during soil remediation. Risk assessment was performed in accordance with the Environment Ministry's Risk Assessment Guidelines. The results of the human risk assessment of contaminated heavy metal soil contaminated by improperly buried waste in the railway site were presented after the process of determining exposure concentration, calculating exposure, and determining carcinogenic hazards. The heavy metal content of soil is 621.3 Cu mg/kg, 2,824.5 Pb mg/kg, 1,559.1 Zn mg/kg and 45 Ni mg/kg, which is the exposure concentration of the target contaminant. The results of human exposure according to exposure pathways were high in the order of soil outdoor dust >soil ingestion >soil contact, and Pb >Zn >Cu >Ni were higher in order of contaminant. The carcinogenic and noncarcinogenic risks of soil contaminated with heavy metal waste were higher than the allowable carcinogenic risks (TCR> $10^{-6}$) and the risk index (Hi < 1.0) suggested by USEPA. Therefore, the site needs to be remediated.

Heavy Metal Concentrations in Soils and Stream around the Abandoned Mine Land (폐광산 주변 토양 및 하천의 중금속 함량)

  • 전관수;이철희;원양수;정진욱;박병삼;신덕구
    • Journal of Environmental Science International
    • /
    • v.8 no.2
    • /
    • pp.197-204
    • /
    • 1999
  • The extent of heavy metal pollution in agricultural in soils near the abandoned mine land site was investigated using their concentrations from the 47 sampling sites in B mine. Samples were prepared using 0.1N HCI - Korean Standard Methods - and then analysed for Cd, Cu, Pb, As and Cr by Inductively Coupled Plasma Spectrometer. In addition, soil and mine tailing samples were sequentially extracted to investigate the chemical speciation of heavy metals in them. The soils in the vicinity of mining area are highly contaminated by heavy metals ranging up to 5.96mg Cd/kg, 253.3mg Cu/kg, 76.7mg Pb/kg, and 15.45 mg As/kg, according to the analysis of Korean Standard Methods. The heavy metal levels by the sequential extraction are much higher than its level by Korean Standard Methods, and little correlated with each other. Based on the results, it is suggested that the As pollution in agricultural soils near the AMLS should be dealt as of prior significance in establishing reclamation strategies for the area.

  • PDF

EDDS Effects on Heavy Metal Uptake by Bioenergy Plants (EDDS가 바이오에너지 작물의 중금속 흡수에 미치는 영향)

  • Lee, Junghun;Sung, Kijune
    • Journal of Soil and Groundwater Environment
    • /
    • v.20 no.4
    • /
    • pp.8-14
    • /
    • 2015
  • Plants grown in metal-contaminated sites have to be managed and disposed of safely even in phytoremediation because heavy metals can be transferred to other organisms through the food chain, which could result in bioaccumulation in organisms of a higher trophic level. However, if the harvested plants could be used for bioenergy, the ecological risk is reduced and phytoremediation improves economic feasibility. This study researched the effects of EDDS (Ethylenediamine disuccinate) on the heavy metal uptake performance of Brassica campetris and Sorghum biocolor, both of which have potential as bioenergy plants. The results showed that EDDS could increase Pb, Cu, Ni, Cd, and Zn concentrations in the roots and shoots of both of these plants. Furthermore, EDDS reduced the metal inhibition of the S. bicolor length growth. The translocation factors (TF) of S. bicolor and B. campestris are smaller than one for all five heavy metals tested and decreased by the following order: heavy metal + EDDS > heavy metals only > uncontaminated soil. The results suggest that with regard to plant growth and metal accumulation, S. bicolor treated with EDDS is more suitable than is B. campestris for the phytoremediation of soils contaminated with multiple metal species.

Bioremediation of Heavy Metal Contaminated Mine Wastes using Urease Based Plant Extract (요소분해효소 기반 식물추출액을 이용한 광산폐기물 내 중금속 오염 저감)

  • Roh, Seung-Bum;Park, Min-Jeong;Chon, Chul-Min;Kim, Jae-Gon;Song, Hocheol;Yoon, Min-Ho;Nam, In-Hyun
    • Journal of Soil and Groundwater Environment
    • /
    • v.20 no.1
    • /
    • pp.56-64
    • /
    • 2015
  • Acid mine drainage occurrence is a serious environmental problem by mining industry, it usually contains high levels of metal ions, such as iron, copper, zinc, aluminum, and manganese, as well as metalloids of which arsenic is generally of the greatest concern. An indigenous plant extract was used to produce calcium carbonate from Canavalia ensiformis as effective biomaterial, and its ability to form the calcium carbonate under stable conditions was compared to that of purified urease. X-ray diffraction and scanning electron microscopy were employed to elucidate the mechanism of calcium carbonate formation from the crude plant extracts. The results revealed that urease in the plant extracts catalyzed the hydrolysis of urea in liquid state cultures and decreased heavy metal amounts in the contaminated soil. The heavy metal amounts were decreased in the leachate from the treated mine soil; 31.7% of As, 65.8% of Mn, 50.6% of Zn, 51.6% of Pb, 45.1% of Cr, and 49.7% of Cu, respectively. The procedure described herein is a simple and beneficial method of calcium carbonate biomineralization without cultivation of microorganisms or further purification of crude extracts. This study suggests that crude plant extracts of Canavalia ensiformis have the potential to be used in place of purified forms of the enzyme during remediation of heavy metal contaminated soil.