Browse > Article
http://dx.doi.org/10.7857/JSGE.2015.20.4.008

EDDS Effects on Heavy Metal Uptake by Bioenergy Plants  

Lee, Junghun (Department of Ecological Engineering, Pukyong National University)
Sung, Kijune (Department of Ecological Engineering, Pukyong National University)
Publication Information
Journal of Soil and Groundwater Environment / v.20, no.4, 2015 , pp. 8-14 More about this Journal
Abstract
Plants grown in metal-contaminated sites have to be managed and disposed of safely even in phytoremediation because heavy metals can be transferred to other organisms through the food chain, which could result in bioaccumulation in organisms of a higher trophic level. However, if the harvested plants could be used for bioenergy, the ecological risk is reduced and phytoremediation improves economic feasibility. This study researched the effects of EDDS (Ethylenediamine disuccinate) on the heavy metal uptake performance of Brassica campetris and Sorghum biocolor, both of which have potential as bioenergy plants. The results showed that EDDS could increase Pb, Cu, Ni, Cd, and Zn concentrations in the roots and shoots of both of these plants. Furthermore, EDDS reduced the metal inhibition of the S. bicolor length growth. The translocation factors (TF) of S. bicolor and B. campestris are smaller than one for all five heavy metals tested and decreased by the following order: heavy metal + EDDS > heavy metals only > uncontaminated soil. The results suggest that with regard to plant growth and metal accumulation, S. bicolor treated with EDDS is more suitable than is B. campestris for the phytoremediation of soils contaminated with multiple metal species.
Keywords
Phytoremediation; Translocation factor; Brassica campestris; Sorghum bicolor;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Saifullah, E.M., Qadir, M., de Caritat, P., Tack, F.M.G., Laing, G.D., and Zia, M.H., 2009, EDTA-assisted Pb phytoextraction, Chemosphere, 74, 1279-1291.   DOI
2 Shen, Z., Li, X., Wang, C., Chen, H., and Chua, H., 2002, Lead Phytoextraction from contaminated soil with high-biomass plant species, J. Environ. Qual., 31, 1893-1900.   DOI
3 Sung, K., Kim, K.S., and Park, S., 2013, Enhancing degradation of total petroleum hydrocarbons and uptake of heavy metals in a wetland microcosms planted with Phragmites communis by humic acid addition, Int. J. Phytorem., 15, 536-549.   DOI
4 USEPA, 1996, Test methods for evaluating solid waste (SW- 846).
5 Garbisu, C. and Alkorta, I., 2001, Phytoextraction: a cost-effective plant-based technology for the removal of metals from the environment, Bioresour. Technol., 77, 229-36.   DOI
6 Grčman, H., Velikonja-Bolta, S., Vodnik, D., and Lestan, K.D., 2001, EDTA enhanced heavy metal phytoextraction: metal accumulation, leaching and toxicity, Plant and Soil, 235, 105- 114.   DOI
7 Grčman, H., Vodnik, D., Velikonja-Bolta, S., and Lestan, D., 2003, Heavy metals in the environment: ethylenediaminedissuccinate as a new chelate for environmentally safe enhanced lead phytoextraction, J. Environ. Qual., 32, 500-506.   DOI
8 Gripsen, V.M.J., Nelissen, H.J.M., and Verkleij, J.A.C., 2006, Phytoextraction with Brassica napus L. : A tool for sustainable management of heavy metal contaminated soils, Environ. Pollut., 144, 77-83.   DOI
9 Gupta, A..K., Mishra, R.K., Sinha, S., and Lee, B., 2010, Growth, metal accumulation and yield performance of Brassica campestris L. (cv. Pusa Jaikisan) grown on soil amended with tannery sludge/fly ash mixture, Ecol. Eng., 36, 981-991.   DOI
10 Huang, J.W., Chen, J., Berti, W.R., and Cunningham, S.D., 1997, Phytoremediation of lead-contaminated soils: role of synthetic chelates in lead phytoextraction, Environ. Sci. Technol., 31, 800-805.   DOI
11 Jaworska, S.S., Schowanek, D., and Feijtel, T.C.J., 1999, Environmental risk assessment for trisodium [S,S]- ethylene diamine disuccinate, a biodegradable chelator used in detergent applications, Chemosphere, 38, 3597-3625.   DOI
12 Lee, C., 2003, Illustrated Guide to Korean flora, Hyangmunsa, Seoul.
13 Lee, J. and Sung, K., 2014, Effects of chelates on soil microbial properties, plant growth and heavy metal accumulation in plants, Ecol. Eng., 73, 386-394.   DOI
14 Bang, J.K., Nam, S.S., Ahn, S.H., and Suh, S.J., 2009, Current research on sweet sorghum (Sorghum bicolor L. Moench) to bio-ethanol in China, J. Kor. Soc. Int. Agri., 21(3), 183-188.
15 Cooper, E.M., Sims, J.T., Cunningham, S.D., Huang, J.W., and Berti, W.R., 1999, Chelate-Assisted phytoextraction of lead from contaminated soils, J. Environ. Qual., 28, 1709-1719.
16 Evangelou, M.W.H., Bauer, U., Ebel, M., and Schaffer, A., 2007, The influence of EDDS and EDTA on the uptake of heavy metals of Cd and Cu from soil with tobacco Nicotiana tabacum, Chemosphere, 68, 345-353.   DOI
17 Purakayastha, T.J., Viswanath, T., Bhadraray, S., Chhonkar, P.K., Adhikari, P.P., and Suribabu, K., 2008, Phytoextraction of Zinc, Copper, Nickel and Lead from a Contaminated Soil by Different Species of Brassica, Int. J. Phytorem., 10, 61-72.   DOI
18 Luo, C., Shen, Z., and Li, X., 2005, Enhanced phytoextraction of Cu, Pb, Zn and Cd with EDTA and EDDS, Chemosphere, 59, 1-11.   DOI
19 Meers, E., Ruttens, A., Hopgood, M.J., Samson, D., and Tack, F.M.G., 2005, Comparison of EDTA and EDDS as potential soil amendments for enhanced phytoextraction of heavy metals, Chemosphere, 58, 1011-1022.   DOI
20 Nascimento, C.W.A., Amarasiriwardena, D., and Xing, B., 2006, Comparison of natural organic acids and synthetic chelates at enhancing phytoextraction of metals from a multi metal contaminated soil, Environ. Pollut., 140, 114-123.   DOI
21 Salt, D.E., Smith, R.D., and Raskin, I., 1998, Phytoremediation. Annu. Rev. Plant Physiol. Plant Mol. Biol., 49, 643-668.   DOI