Browse > Article
http://dx.doi.org/10.5338/KJEA.2014.33.4.271

Transfer Function for Phytoavailable Heavy Metals in Contaminated Agricultural Soils: The Case of The Korean Agricultural Soils Affected by The Abandoned Mining Sites  

Lim, Ga-Hee (Department of Environment Horticulture, University of Seoul)
Kim, Kye-Hoon (Department of Environment Horticulture, University of Seoul)
Seo, Byoung-Hwan (Department of Agronomy and Medicinal Plant Resources, Gyeongnam National University of Science and Technology)
Kim, Kwon-Rae (Department of Agronomy and Medicinal Plant Resources, Gyeongnam National University of Science and Technology)
Publication Information
Korean Journal of Environmental Agriculture / v.33, no.4, 2014 , pp. 271-281 More about this Journal
Abstract
BACKGROUND: Application of the transfer functions derived from local soil data is necessary in order to develop proper management protocols for agricultural soils contaminated with heavy metals through phytoavailability control of the heavy metals. The aim of this study was to derive the transfer functions of Korean agricultural soils affected by the abandoned mining sites and evaluate suitability of the derived transfer functions. METHODS AND RESULTS: 142 agricultural soils affected by the abandoned mining sites were collected and analyzed. Two extraction methods, including 1 M $NH_4NO_3$ extraction and 0.01 M $Ca(NO_3)_2$ extraction were applied to determine phytoavailable metal pools in soils. Multiple stepwise regression of phytoavailable metal pools against the corresponding total metal concentration and soil properties was conducted to derive suitable transfer functions for estimating phytoavailable heavy metal pools. Applicability of the derived transfer functions was examined by calculating NME and NRMSE. CONCLUSION: Soil pH and organic matter were valid variables for derivation of the transfer functions which were applicable for estimating phytoavailable metal concentrations in the soils being contaminated by heavy metals. In addition, it was confirmed that transfer functions need to be developed based on local soil conditions to accurately estimate heavy metal-phytoavailability.
Keywords
Agricultural soils; Heavy metals; Phytoavailability; Soil properties; Transfer function;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Tack, F.M.G., Van Ranst, E., Lievens, C., Vandenberghe, R.E., 2006. Soil solution Cd, Cu and Zn concentrations as affected by short-time drying or wetting: the role of hydrous oxides of Fe and Mn, Geoderma 137, 83-89.   DOI   ScienceOn
2 Wang, X.P., Shan, X.Q., Zhang, S.Z., Wen, B., 2004. A model for evaluation of the phytoavailability of trace elements to vegetables under the field conditions. Chemosphere 55, 811-822.   DOI   ScienceOn
3 Yoon, J.K., Kim, D.H., Kim, T.S., Park, J.G., Chung, I.R., Kim, J.H., Kim, H., 2009. Evaluation on natural background of the soil heavy metals in Korea, J. Soil Groundwater Environ. 14, 32-39.   과학기술학회마을
4 De Vries, W., Romkens, P.F.A.M., Bonten, L.T.C., 2008. Spatially explicit integrated risk assessment of present soil concentrations of cadmium, lead, copper and zinc in the Netherlands, Water Air Soil Pollut. 191, 199-215.   DOI
5 De Vries, W., McLaughlin, M.J., Groenenberg, J.E., 2011. Transfer functions for solid-solution partitioning of cadmium for Australian soils, Environ. Pollut. 159, 3583-3594.   DOI
6 Gray, C.W., McLaren, R.G., Roberts, A.H.C., Condron, L.M., 1998. Sorption and desorption of cadmium from some New Zealand soils: effect of pH and time, Aust. J. Soil Res. 32, 192-216.
7 Gray, C.W., McLaren, R.G., Roberts, A.H.C., Condron, L.M., 1999. Solubility, sorption, and desorption of added cadmium in relation to properties of soils in New Zealand, Eur. J. Soil Sci. 50, 127-137.   DOI
8 Groenenberg, J.E., Romkens, P.F.A.M., Comans, R.N.J., Luster, J., Pampura, T., Shotbolt, L., Tipping, E., De Vries, W., 2010. Transfer functions for solid-solution partitioning of cadmium, copper, nickel, lead and zinc in soils: derivation of relationships for free metal ion activities and validation with independent data, Eur. J. soil sci. 61, 58-73.   DOI
9 Groenenberg, J.E., 2011. Evaluation of Models for Metal Partitioning and Speciation in Soils and Their Use in Risk Assessment. pp. 201-206, Wageningen University, Netherlands.
10 Gupta, A.K., Sinha, S., 2007. Assessment of single extraction methods for the prediction of bioavailability of metals to Brassica juncea L. Czern. (var. Vaibhav) grown on tannery waste contaminated soil, J. Hazard. Mater. 149, 144-150.   DOI
11 Janssen, P.H.M., Heuberger, P.S.C., 1995. Calibration of process-oriented models, Ecol. Model. 83, 55-66.   DOI   ScienceOn
12 Kim, K.R., Kim, J.G., Park, J.S., Kim, M.S., Owens, G., Youn, G.H., Lee, J.S., 2012. Immobilizer-assisted management of metal-contaminated agricultural soils for safer food production, J. Environ. Manag. 102, 88-95.   DOI   ScienceOn
13 Kashem, M.A., Singh, B.R., 2001. Metal availability in contaminated soils: I. Effects of flooding and organic matter on changes in Eh, pH and solubility of Cd, Ni and Zn, Nutrient Cycl. Agroecosystems 61, 247-255.   DOI   ScienceOn
14 Kim, K.R., Owens, G., Naidu, R., Kim, K.H., 2007. Assessment techniques of heavy metal bioavailability in soil - A critical review, Kor. J. Soil Sci. Fert. 40, 311-325.   과학기술학회마을
15 Kim, K.R., Owens, G., Naidu, R., 2009. Heavy metal distribution, bioaccessibility, and phytoavailability in long-term contaminated soils from Lake Macquarie, Australia. Aust. J. Soil Res. 47, 166-176.   DOI   ScienceOn
16 Krishnamurti, G.S.R., Huang, P.M., Kozak, L.M., 1999. Sorption and desorption kinetics of cadmium from soils: influence of phosphate, Soil Science 164, 888-898.   DOI
17 Krishnamurti, G.S.R., Naidu, R., 2003. Solid-solution equilibria of cadmium in soils, Geoderma 113, 17-30.   DOI   ScienceOn
18 McBride, M.B., 1994. Environmental Chemistry of Soils, pp.308-341, Oxford University Press, United States.
19 McLaughlin, M.J., Maier, N.A., Correll, R.L., Smart, M.K., Sparrow, L.A., McKay, A., 1999. Prediction of cadmium concentrations in potato tubers (Solanum tuberosum L.) by pre-plant soil and irrigation water analyses, Aust. J. soil Res. 37, 191-207.   DOI   ScienceOn
20 Miller, W.P., Miller, M., 1987. A micro pipette method for soil mechanical analysis, Commun. Soil Sci. Plant Anal. 18, 1-15.   DOI
21 Bonten, L.T.C., Groenenberg, J.E., Weng, L., van Riemsdijk, W.H., 2008. Use of speciation and complexation models to estimate heavy metal sorption in soils, Geoderma 146, 303-310.   DOI
22 Antoniadis, V., Robinson, J.S., Alloway, B.J., 2008. Effects of short-term pH fluctuations on cadmium, nickel, lead, and zinc availability to ryegrass in a sewage sludge-amended field, Chemosphere 71, 759-764.   DOI
23 Bingham, F.T., Sposito, G., Strong, J.E., 1984. The effect of chloride on the availability of cadmium, J. Environ. Qual. 13, 71-74.
24 Bolan, N., Kunhikrishnan, A., Thangarajan, R., Kumpiene, J., Park, J.H., Makino, T., Kirkham, M.B., Scheckel, K., 2014. Remediation of heavy metal(loid)s contaminated soils - To mobilize or to immobilize?, J. Hazard. Mater. 266, 141-166.   DOI
25 De Vries, W., Bakker, D.J., Groenenberg, J.E., Reinds, G.J., Bril, J., van Jaarsveld, J.A., 1998. Calculation and mapping of critical loads for heavy metals and persistent organic pollutants for Dutch forest soils, J. Hazard. Mater. 61, 99-106.   DOI
26 Sauve, S., Hendershot, W., Allen, H.E., 2000a. Solid-solution partitioning of metals in contaminated soils: dependence on pH, total metal burden, and organic matter. Environ. Sci. Tech. 34, 1125-1131.   DOI   ScienceOn
27 Naidu, R., Bolan, N.S., Kookana, R.S., Tiller, K.G., 1994. Ionic-strength and pH effects on the sorption of cadmium and the surface charge of soils, Eur. J. Soil Sci. 45, 419-429.   DOI   ScienceOn
28 Pueyo, M., Lopez-Sanchez, J.F., Rauret, G., 2004. Assessment of $CaCl_2$, $NaNO_3$ and $NH_4NO_3$ extraction procedures for the study of Cd, Cu, Pb and Zn extractability in contaminated soils, Anal. Chim. Acta 504, 217-226.   DOI   ScienceOn
29 Ruby, M.V., Davis, A., Link, T.E., Schoof, R., Chaney, R.L., Freeman, G.B., Bergstrom, P., 1993. Development of an in vitro screening test to evaluate the in vivo bioaccessibility of ingested mine-waste lead, Environ. Sci. Tech. 27, 2870-2877.   DOI   ScienceOn
30 Sauve, S., Norvell, W.A., McBride, M., Hendershot, W., 2000b. Complexation and speciation of cadmium in extracted soil solutions. Environ. Sci. Tech. 34, 291-296.   DOI   ScienceOn
31 Schwertmann, U., 1964. The differentiation of iron oxide in soils by a photochemical extraction with acid ammonium oxalate, Z. Pflanzenernahr Dung. Bodenkunde. 105, 194-201.   DOI
32 Schwertmann, U., 1973. Use of oxalate for Fe extraction from soils, Can. J. Soil Sci. 53, 244-246.   DOI
33 Seo, B.H., Lim, G.H., Kim, K.H., Kim, J.H., Hur, J.H., Kim, W.I., Kim, K.R., 2013. Comparison of single extractions for evaluation of heavy metal phytoavailability in soil, Korean J. Environ. Agric. 32, 171-178.   과학기술학회마을   DOI
34 Kang, S.S., Roh, A.S., Choi, S.C., Kim, Y.S., Kim, H.J., Choi, M.T., Ahn, B.K., Kim, H.W., Kim, H.K., Park, J.H., Lee, Y.H., Yang, S.H., Ryu, J.S., Jang, Y.S., Kim, M.S., Son, Y.K., Lee, C.H., Ha, S.G., Lee, D.B., Kim, Y.H., 2012. Status and changes in chemical properties of paddy soil in Korea, Korean J. Soil Sci. Fert. 45, 968-972.   과학기술학회마을   DOI   ScienceOn
35 Groenenberg, J.E., Romkens, P.F.A.M., De Vries, W., 2006. Prediction of the Long Term Accumulation and Leaching of Copper in Dutch Agricultural Soils: a Risk Assessment Study, pp. 53-56, Alterra Report 1278, Alterra, Netherlands.