• 제목/요약/키워드: Heavy metal adsorbent

검색결과 115건 처리시간 0.015초

Analysis of Heavy Metal Toxic Ions by Adsorption onto Amino-functionalized Ordered Mesoporous Silica

  • Showkat, Ali Md;Zhang, Yu-Ping;Kim, Min-Seok;Gopalan, Anantha Iyengar;Reddy, Kakarla Raghava;Lee, Kwang-Pill
    • Bulletin of the Korean Chemical Society
    • /
    • 제28권11호
    • /
    • pp.1985-1992
    • /
    • 2007
  • Ordered mesoporous silica (MCM-41) materials with different textural properties were prepared using alkyl (dodecyl, cetyl, eicosane) trimethyl ammonium bromide (DTAB, CTAB, ETAB, respectively) as structure directing surfactants, functionalized with amine groups and used as adsorbent for the toxic metal ions, Cr (VI), As (V), Pb (II) and Hg (II). Amino functionalization of mesoporous MCM-41 was achieved by cocondensation of N-[3-(trimethoxysilyl)-propyl] aniline with tetraethyl orthosilicate. Adsorption isotherm and adsorption capacity of the amine functionalized materials for Cr (VI), As (V), Pb (II) and Hg (II) ions were followed by inductively coupled plasma mass spectrometry (ICP-MS). Results demonstrate that amine functionalized MCM-41 prepared with ETAB showed higher adsorption capacity for Cr (VI), As (V), Pb (II) and Hg (II) ions in comparison to MCM-41 prepared with CTAB and DTAB. The higher adsorption capacity for MCM-41(ETAB) was correlated with amine content in the material (determined by CHN analysis) and relative decrease in pore volume and pore diameter. X-ray diffraction (XRD) analysis, nitrogen adsorptiondesorption measurements and Fourier Transform infrared spectrometry (FTIR) were used to follow the changes in the textural parameters and surface properties of the mesoporous materials as a result of amine functionalization to correlate with the adsorption characteristics. The adsorption process was found to depend on the pH of the medium.

Chitosan 및 Chitosan유도체를 이용한 중금속 이온 흡착에 관한 연구 (A Study on Adsorption of Heavy Metal Ions Using Chitosan and Chitosan Derivative)

  • 이광일;곽천근;장병만;김영주;박태홍;노승일;이기창
    • 한국응용과학기술학회지
    • /
    • 제13권3호
    • /
    • pp.25-34
    • /
    • 1996
  • We have synthesized the water-insoluble chitosan derivative, N-dithiocarboxy chitosan sodium salt, through the reaction of chitosan with carbon disulfide in the presence of alkali metal hydroxide, Chitosan itself has been prepared using chitin, one of the most abundant compounds in nature, as a starting material. To elucidate this natural polymer the capacity of adsorbing heavy metal ions, we have performed adsorption experiments using chitosan derivatives of various average molecular weights with different contents of sulfur. The effect of pH, adsorption time and temperature on adsorption efficiency was also studied. The adsorbent derived from chitosan of average molecular weight ranging $5,700{\sim}20,000$ was shown to have the highest capacity of adsorbing heavy metal ions. Adsorbing efficiency was increased as the reaction time was increased and as the reaction temperature range of $25{\sim}45^{\circ}C$. The adsorption capacity at various pH, however, appeared to vary depending on the heavy metal ions studied.

Recent Progress on Adsorptive Removal of Cd(II), Hg(II), and Pb(II) Ions by Post-synthetically Modified Metal-organic Frameworks and Chemically Modified Activated Carbons

  • Rallapalli, Phani Brahma Somayajulu;Choi, Suk Soon;Ha, Jeong Hyub
    • 공업화학
    • /
    • 제33권2호
    • /
    • pp.133-144
    • /
    • 2022
  • Fast-paced industrial and agricultural development generates large quantities of hazardous heavy metals (HMs), which are extremely damaging to individuals and the environment. Research in both academia and industry has been spurred by the need for HMs to be removed from water bodies. Advanced materials are being developed to replace existing water purification technologies or to introduce cutting-edge solutions that solve challenges such as cost efficacy, easy production, diverse metal removal, and regenerability. Water treatment industries are increasingly interested in activated carbon because of its high adsorption capacity for HMs adsorption. Furthermore, because of its huge surface area, abundant functional groups on surface, and optimal pore diameter, the modified activated carbon has the potential to be used as an efficient adsorbent. Metal-organic frameworks (MOFs), a novel organic-inorganic hybrid porous materials, sparked an interest in the elimination of HMs via adsorption. This is due to the their highly porous nature, large surface area, abundance of exposed adsorptive sites, and post-synthetic modification (PSM) ability. This review introduces PSM methods for MOFs, chemical modification of activated carbons (ACs), and current advancements in the elimination of Pb2+, Hg2+, and Cd2+ ions from water using modified MOFs and ACs via adsorption.

Chintin, Chitosan, Cellulose 및 혼합 Beads의 중금속 이온 흡착특성에 관한 연구 (Study on the adsorption of Heavy Metals by Chitin, Chitosan, Cellulose and its Composite Beads)

  • 전수진;유병태
    • 환경위생공학
    • /
    • 제10권2호
    • /
    • pp.1-12
    • /
    • 1995
  • Under accelerated industrial developments environment pollution comes out to be very stirious. Especially the ions of heavy metal from wastewater, even if they are minimal, accumulated in ecology circle and do finally injury to human health. The general process for removal of heavy metals include coagulation and following sedimentation, ion -exchange and active carbon adsorption and sedimentation that applicate in popular, needs the expense of coagulant the additional treatment of sludge on the general process of coagulation and sedimentation. It is also a serious problem that the second pollution caused by coagulant. However chelating adsorption that uses natural chelating high- molecular compound has not pollution problem Among chelating high- molecules, the diminishing chitin that contained in crustaceans as crawfish and crab in our country with affluent water resources are easy to get. So it is advantageous to use this ubiquitous material for removing heavy metals because we could reuse natural resource. In this research, the author tested the effectiveness of the adsorption and removal of heavy metal ions by chitin and its derivatives. Chitin and cellulose became beads and used as flocculant, in this test. The results are as follows . First, bead showed higher removal ratio than powder in the comparative test on adsorbents such as chitin, chitosan and cellulose. Secondly, in the variety test by the kinds of adsorbent and time. chitosan bead and cellulose bead that showed the highest removal ratio. One hour need to remove the ions of heavy metal. Thirdly, the results of the adsorption degree test by pH revealed high removal ratio adsorption of chitin, cellulose and chitosan bead in alkalin condition but chitosan bead in acidic condition.

  • PDF

사용 후 유리세라믹(Lithium-Aluminum-Silicate)을 활용한 중금속 제거 기초 연구 (A Basic Study for Removal of Heavy Metal Elements from Wastewater using Spent Lithium-Aluminum-Silicate(LAS) Glass Ceramics)

  • 고민석;왕제필
    • 자원리싸이클링
    • /
    • 제31권4호
    • /
    • pp.49-55
    • /
    • 2022
  • 본 연구에서는 인덕션 탑플레이트(induction top plate) 소재로 사용된 후 폐기되는 사용 후 Li2O-Al2O3-SiO2계 결정화 유리를 활용하여 중금속 용액 내 존재하는 중금속(Pb, Cd, Cr6+, Hg) 이온들의 제거 실험을 진행하였다. 중금속 흡착제로 사용된 흡착제의 양, 흡착 반응 시간, 초기 중금속 원소의 농도, 초기 용액의 pH 등의 반응 조건에 따른 중금속 제거 효율의 변화를 조사하였다. 사용 후 LAS 첨가량이 증가할수록 중금속 제거 효율이 상승하였다. 흡착 반응 시간은 흡착 특성에 큰 영향을 미치는 것으로 확인되었으며, 모든 중금속 원소들의 제거 효율이 상승하였다. 특히 반응 시간에 따라서 Cd의 경우 흡착제거 효율이 크게 개선되었다. 초기 중금속 용액 농도는 중금속 제거 효율에 영향을 미치지 않았다. 중금속 용액의 pH는 중금속 제거 효율에 영향을 미쳤는데, Cd의 경우 pH증가에 따라 중금속 제거 효율이 증가하였으며, Pb, Cr6+는 감소하였다. Hg는 pH가 흡착 특성에 큰 영향을 미치지 않았다.

활성탄과 카본나노튜브를 이용한 수용액상의 니켈과 구리 제거 특성 (Removal Properties of Nickel and Copper ions by Activated Carbon and Carbon Nanotube)

  • 정용준
    • 한국습지학회지
    • /
    • 제20권4호
    • /
    • pp.410-416
    • /
    • 2018
  • 본 연구는 탄소나노튜브(MWCNT)와 활성탄을 이용한 니켈과 구리의 흡착특성을 평가하였다. 산성조건에서 활성탄의 제거성능이 낮은 반면, MWCNT만 니켈과 구리를 흡착 제거하는데 효율적이었다. MWCNT와 중금속의 흡착반응은 유사 일차반응식을 따랐다. 초기 pH가 중성일 때, 니켈은 MWCNT에 의해 신속히 제거되었고, 활성탄은 4시간에 각각 99.02%와 80.30%를 나타냈다. 또한, 구리이온은 초기 pH가 중성일 때 4시간내에 효율적으로 제거되었다. 흡착제 주입량을 증가함에 따라 pH가 증가하였고, 중금속 제거율도 증가하였다. 또한, 산화 전처리 공정은 MWCNT의 중금속 제거율을 증가시켰다.

Red Mud를 이용한 토양 및 슬러지내 중금속 제거 특성

  • 김이태;배우근;김우정;정원식
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2003년도 추계학술발표회
    • /
    • pp.73-77
    • /
    • 2003
  • Red mud is a waste material formed during the production of alumina when the bauxite ore is subjected to caustic leaching. It is a brick-red colored highly alkaline (pH 10-12) sludge containing mostly oxides of iron, aluminum, titanium, and silica. Red mud, due to its high aluminum, iron, and calcium contents, has been suggested as a cheap adsorbent for removal of toxic metals (e.g., As, Cr, Pb, Cd) as well as for water or wastewater treatment. The basic advantage of red mud is its versatility in application. This study was conducted to evaluate the effect of red mud on stabilization and fixation of heavy metals (such as Pb, Cu, C $r^{6+}$, Cd, Zn) contained in the Al-coating sludge and soil. The results showed that the concentration of heavy metals leached from the treated sludge and soil was low, meeting the regulatory permit level.

  • PDF

Adsorption of Heavy Metal Ions onto Chemically Oxidized Ceiba pentandra (L.) Gaertn. (Kapok) Fibers

  • Chung, Byung-Yeoup;Cho, Jae-Young;Lee, Min-Hee;Wi, Seung-Gon;Kim, Jin-Hong;Kim, Jae-Sung;Kang, Phil-Hyun;Nho, Young-Chang
    • Journal of Applied Biological Chemistry
    • /
    • 제51권1호
    • /
    • pp.28-35
    • /
    • 2008
  • The physico-chemical properties of kapok fibers were altered via the combination processes of chlorite-periodate oxidation, in order to assess their efficacy as a heavy metal adsorbent. The chemically-oxidized kapok fibers were found to harbor a certain amount of polysaccharides, together with lowered lignin content. This alteration in lignin characteristics was clearly confirmed via FTIR and NBO yield. Moreover, chemically oxidized kapok fibers retained their hollow tube shape, although some changes were noted. The chemically oxidized kapok fibers evidenced elevated ability to adsorb heavy metal ions with the best fit for the Langmuir adsorption isotherm model. Three cycles of adsorption-desorption were conducted with in-between regeneration steps. Our experimental results indicated that chemically oxidized kapok fibers possessed excellent adsorption characteristics, and the modified kapok fibers could be completely regenerated with almost equimolar diluted sodium hydroxide. Pb, Cu, Cd and Zn ions evidenced adsorption rates of 93.55%, 91.83%, 89.75%, and 92.85% on the chemically oxidized kapok fibers. The regeneration efficiency showed 73.58% of Pb, 71.55% of Cu, 66.87% of Cd, and 75.00% of Zn for 3rd cycle with 0.0125N NaOH.

다양한 커플링제로 표면 개질된 실리카들을 활용한 음이온성 염료 및 중금속의 제거 (Removal of Anionic Dyes and Heavy Metal Ions Using Silica Nanospheres or Porous Silica Micro-particles Modified with Various Coupling Agents)

  • 성소현;이민준;조영상
    • Korean Chemical Engineering Research
    • /
    • 제59권4호
    • /
    • pp.596-610
    • /
    • 2021
  • 스토버 방식에 의한 구형 단분산 입자와 에멀젼 액적을 미세 반응기로 활용하여 합성한 주름진 표면을 갖는 실리카 입자 및 거대 기공을 갖는 다공질 실리카 입자를 커플링제로 표면 개질하여 흡착제로 활용하였다. 아민기를 포함하는 실란 또는 타이타네이트 커플링제를 활용하여 기존의 실리카 재료로는 흡착이 어려웠었던 중금속과 음이온성 염료에 대한 흡착력이 향상된 것을 관찰할 수 있었다. 음이온 염료에 대한 흡착에서는 APTES로 표면 개질한 다공질 실리카가 흡착 효율이 가장 높은 결과를 나타내었고, 중금속 구리에 대한 흡착 결과는 AAPTS로 표면 개질한 다양한 실리카 분말에서 모두 100%에 가까운 흡착 효율을 얻을 수 있었다.

Adsorption of Co(II), Ni(II), Pb(II) and U(VI) from Aqueous Solutions using Polyaniline/Graphene Oxide Composites

  • Liu, Zhengjie;Yang, Jianwei;Li, Changzhen;Li, Jiaxing;Jiang, Yajuan;Dong, Yunhui;Li, Yueyun
    • Korean Chemical Engineering Research
    • /
    • 제52권6호
    • /
    • pp.781-788
    • /
    • 2014
  • Polyaniline modified graphene oxide (PANI/GO) composites were synthesized by dilute polymerization technique and were characterized by Fourier transformed infrared spectroscopy (FTIR), Raman spectroscopy, and scanning electron microscopy (SEM). The characterization results indicated that polyaniline molecules were successfully grafted on GO surfaces. The application of PANI/GO composites to the adsorption of heavy metals from aqueous solutions was investigated under ambient conditions. The maximum adsorption capacities of Co(II), Ni(II), Pb(II) and U(VI) ions on PANI/GO composites calculated from Langmuir models are 22.28, 25.67, 65.40 and 1552.31 mg/g, respectively. The excellent adsorption capacity suggests that PANI/GO composites can be applied as a promising adsorbent in heavy metal pollution cleanup in environmental pollution management.