Browse > Article
http://dx.doi.org/10.14478/ace.2022.1006

Recent Progress on Adsorptive Removal of Cd(II), Hg(II), and Pb(II) Ions by Post-synthetically Modified Metal-organic Frameworks and Chemically Modified Activated Carbons  

Rallapalli, Phani Brahma Somayajulu (Department of Integrated Environmental Systems, Pyeongtaek University)
Choi, Suk Soon (Department of Biological and Environmental Engineering, Semyung University)
Ha, Jeong Hyub (Department of Integrated Environmental Systems, Pyeongtaek University)
Publication Information
Applied Chemistry for Engineering / v.33, no.2, 2022 , pp. 133-144 More about this Journal
Abstract
Fast-paced industrial and agricultural development generates large quantities of hazardous heavy metals (HMs), which are extremely damaging to individuals and the environment. Research in both academia and industry has been spurred by the need for HMs to be removed from water bodies. Advanced materials are being developed to replace existing water purification technologies or to introduce cutting-edge solutions that solve challenges such as cost efficacy, easy production, diverse metal removal, and regenerability. Water treatment industries are increasingly interested in activated carbon because of its high adsorption capacity for HMs adsorption. Furthermore, because of its huge surface area, abundant functional groups on surface, and optimal pore diameter, the modified activated carbon has the potential to be used as an efficient adsorbent. Metal-organic frameworks (MOFs), a novel organic-inorganic hybrid porous materials, sparked an interest in the elimination of HMs via adsorption. This is due to the their highly porous nature, large surface area, abundance of exposed adsorptive sites, and post-synthetic modification (PSM) ability. This review introduces PSM methods for MOFs, chemical modification of activated carbons (ACs), and current advancements in the elimination of Pb2+, Hg2+, and Cd2+ ions from water using modified MOFs and ACs via adsorption.
Keywords
Heavy metals (HMs); Environmental pollution; Activated carbon; Metal-organic frameworks (MOFs); Chemical modification; Post-synthetic modification;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Y. K. Hwang, D. -Y. Hong, J. -S. Chang, S. H. Jhung, Y. -K. Seo, J. Kim, A. Vimont, M. Daturi, C. Serre, and G. Ferey, Amine grafting on coordinatively unsaturated metal centers of MOFs: Consequences for catalysis and metal encapsulation, Angew. Chem. Int. Ed., 47, 4144-4148 (2008).   DOI
2 F. Ke, L.-G. Qiu, Y.-P. Yuan, F.-M. Peng, X. Jiang, A.-J. Xie, Y.-H. Shen, and J.-F. Zhu, Thiol-functionalization of metal-organic framework by a facile coordination-based postsynthetic strategy and enhanced removal of Hg2+ from water, J. Hazard. Mater., 196, 36-43 (2011).   DOI
3 Z. S. Hasankola, R. Rahimi, H. Shayegan, E. Moradi, and V. Safarifard, Removal of Hg2+ heavy metal ion using a highly stable mesoporous porphyrinic zirconium metal-organic framework, Inorganica Chim. Acta, 501, 119264 (2020).   DOI
4 K. K. Tanabea and S. M. Cohen, Postsynthetic modification of metal-organic frameworks-a progress report, Chem. Soc. Rev., 40, 498-519 (2011).   DOI
5 Q. Zhang, R. Wu, Y. Zhou, Q. Lin, and C. Fang. A novel surface-oxidized rigid carbon foam with hierarchical macro-nanoporous structure for efficient removal of malachite green and lead ion, J. Mater. Sci. Technol., 103, 15-28 (2022).   DOI
6 H. Farida, B. Okta, and L. Wirani, Characterization of activated carbon from rice husk by HCl activation and its application for lead (Pb) removal in car battery wastewater, IOP Conf. Ser.: Mater. Sci. Eng., 180, 012151 (2017).   DOI
7 M. Kalaj and S. M. Cohen, Postsynthetic modification: An enabling technology for the advancement of metal-organic frameworks, ACS Cent. Sci., 6, 1046-1057 (2020).   DOI
8 L. Mouni, L. Belkhiri, M. Tafer, F. Zouggaghe, and Y. Kadmi, Studies on the removal of Pb(II) from wastewater by activated carbon developed from apricot stone activated with sulphuric acid, Moroc. J. Chem., 2, 452-456 (2014).
9 Md. M. Rahman, S. H. Samsuddin, M. F. Miskon, K. Yunus, and A. M. Yusof, Phosphoric acid activated carbon as borderline and soft metal ions scavenger, Green Chem. Lett. Rev., 8, 9-20 (2015).   DOI
10 Y. Wu, Y. Fan, M. Zhang, Z. Ming, S. Yang, A. Arkin, and P. Fang, Functionalized agricultural biomass as a low-cost adsorbent: utilization of rice straw incorporated with amine groups for the adsorption of Cr (VI) and Ni (II) from single and binary systems, Biochem. Eng. J., 105, 27-35 (2016).   DOI
11 T. Wajima, Carbonaceous adsorbent derived from sulfur-impregnated heavy oil ash and its lead removal ability from aqueous solution, Processes, 8, 1484 (2020).   DOI
12 H. Xue, Q. Chen, F. Jiang, D. Yuan, G. Lv, L. Liang, L. Liu, and M. Hong, A regenerative metal-organic framework for reversible uptake of Cd(II): from effective adsorption to in situ detection, Chem. Sci., 7, 5983-5988 (2016).   DOI
13 H. Demey, T. Vincent, and E. Guibal, A novel algal-based sorbent for heavy metal removal, Chem. Eng. J., 332, 582-595 (2018).   DOI
14 D. Lv, Y. Liu, J. Zhou, K. Yang, Z. Lou, S. A. Baig, and X. Xu, Application of EDTA-functionalized bamboo activated carbon (BAC) for Pb(II) and Cu(II) removal from aqueous solutions, Appl. Surf. Sci., 428, 648-658 (2018).   DOI
15 S. Hydari, H. Sharififard, M. Nabavinia, and M. R. Parvizi, A comparative investigation on removal performances of commercial activated carbon, chitosan biosorbent and chitosan/activated carbon composite for cadmium, Chem. Eng. J., 193-194, 276-282 (2012).   DOI
16 Z. Liu, Y. Sun, X. Xu, J. Qu, and B. Qu, Adsorption of Hg(II) in an aqueous solution by activated carbon prepared from rice husk using KOH activation, ACS Omega, 5, 29231-29242 (2020).   DOI
17 B. Huang, G. Liu, P. Wang, X. Zhao, and H. Xu, Effect of nitric acid modification on characteristics and adsorption properties of lignite, Processes, 7, 167 (2019).   DOI
18 B. S. Girgis, A. A. Attia, and N. A. Fathy, Modification in adsorption characteristics of activated carbon produced by H3PO4 under flowing gases, Colloids Surf. A: Physicochem. Eng. Asp., 299, 79-87 (2007).   DOI
19 K. Yang, L. Zhu, J. Yang, and D. Lin, Adsorption and correlations of selected aromatic compounds on a KOH-activated carbon with large surface area, Sci. Total Environ., 618, 1677-1684 (2018).   DOI
20 Y. Liu, X. Xu, B. Qu, X. Liu, W. Yi, and H. Zhang, Study on adsorption properties of modified corn cob activated carbon for mercury ion, Energies, 14, 4483 (2021).   DOI
21 Y. Wang and R. Liu, H2O2 treatment enhanced the heavy metals removal by manure biochar in aqueous solutions, Sci. Total Environ., 628-629, 1139-1148 (2018).   DOI
22 J. P. Chen, S. Wu, and K-H. Chong, Surface modification of a granular activated carbon by citric acid for enhancement of copper adsorption, Carbon, 41, 1979-1986 (2003).   DOI
23 M. Farnane, A. Machrouhi, M. Khnifira, M. Barour, R. Elmoubarki, S. Qourzal, H. Tounsadi, and N. Barka, Zinc chloride activation of carob shells for heavy metals removal from water: statistical optimisation, characterisation and isotherm modelling, Int. J. Environ. Anal. Chem., Doi:10.1080/03067319.2020.1777290.   DOI
24 A. Dzigbor and A. Chimphango, Production and optimization of NaCl-activated carbon from mango seed using response surface methodology, Biomass Convers. Biorefin., 9, 421-431 (2019).   DOI
25 H. Tamon and M. Okazaki, Influence of acidic surface oxides of activated carbon on gas adsorption characteristics, Carbon, 34, 741-746 (1996).   DOI
26 H. Ge and J. Wang, Ear-like poly (acrylic acid)-activated carbon nanocomposite: A highly efficient adsorbent for removal of Cd(II) from aqueous solutions, Chemosphere, 169, 443-449 (2017).   DOI
27 Z. Ding, R. Yu, X. Hu, and Y. Chen, Adsorptive removal of Hg (II) ions from aqueous solutions using chemical-modified peanut hull powder, Pol. J. Environ. Stud., 23, 1115-1121 (2014).
28 S. Ali, S. Hussain, R. Khan, S. Mumtaz, N. Ashraf, S. Andleeb, H. A. Shakir, H. M. Tahir, M. K. A. Khan, and M. Ulhaq, Renal toxicity of heavy metals (cadmium and mercury) and their amelioration with ascorbic acid in rabbits, Environ. Sci. Pollut. Res., 26, 3909-3920 (2019).   DOI
29 R. A. Bernhoft, Mercury toxicity and treatment: a review of the literature, J. Environ. Public Health, 2012, 460508 (2012).   DOI
30 S. Ozdemir, M. S. Yalcin, and E. Kilinc, Preconcentrations of Ni (II) and Pb (II) from water and food samples by solid-phase extraction using Pleurotus ostreatus immobilized iron oxide nanoparticles, Food Chem., 336, 127675 (2021).   DOI
31 S. Morais, F. G. Costa, and M. D. L. Pereira, Heavy Metals and Human Health, In: J. Oosthuizen (ed.), Environmental Health - Emerging Issues and Practice, 227-245, IntechOpen (2012).
32 J. P. Chen, S. Wu, and K-H. Chong, Surface modification of a granular activated carbon by citric acid for enhancement of copper adsorption, Carbon, 41, 1979-1986 (2003).   DOI
33 X. Xie, H. Gao, X. Luo, T. Su, Y. Zhang, and Z. Qin, Polyethyleneimine modified activated carbon for adsorption of Cd(II) in aqueous solution, J. Environ. Chem. Eng., 7, 103183 (2019).   DOI
34 T. A. Saleh, A. Sari, and M. Tuzen, Optimization of parameters with experimental design for the adsorption of mercury using polyethylenimine modified-activated carbon, J. Environ. Chem. Eng., 5, 1079-1088 (2017).   DOI
35 D. T. Sun, L. Peng, W. S. Reeder, S. M. Moosavi, D. Tiana, D. K. Britt, E. Oveisi, and W. L. Queen, Rapid, Selective heavy metal removal from water by a metal-organic framework/polydopamine composite, ACS Cent. Sci., 4, 349-356 (2018).   DOI
36 A. Nayak, B. V. Gupta, and P. Sharma, Chemically activated carbon from lignocellulosic wastes for heavy metal wastewater remediation: effect of activation conditions, J. Colloid Interface Sci., 493, 228-240 (2017).   DOI
37 Y. Peng, H. Huang, Y. Zhang, C. Kang, S. Chen, L. S., D. Liu1, and C. Zhong, A versatile MOF-based trap for heavy metal ion capture and dispersion, Nat. Commun., 9, 187-195 (2018).   DOI
38 M. Roushani, Z. Saedi, and Y. M. Baghelani, Removal of cadmium ions from aqueous solutions using TMU-16-NH2 metal organic framework, Environ. Nanotechnol. Monit. Manag., 7, 89-96 (2017).
39 M. A. D. Toral, A. Porter and M. R. Schock, Detection and evaluation of elevated lead release from service lines: A field study, Environ. Sci. Technol., 47, 9300-9307(2013).   DOI
40 V. Kumar, R. D. Parihar, A. Sharma, P. Bakshi, G. P. S. Sidhu, A. S. Bali, I. Karaouzas, R. Bhardwaj, A. K. Thukral, Y. Gyasi-Agyei, and J. Rodrigo-Comino, Global evaluation of heavy metal content in surface water bodies: a meta-analysis using heavy metal pollution indices and multivariate statistical analyses, Chemosphere, 236, 124364 (2019).   DOI
41 G. Genchi, M. S. Sinicropi, G. Lauria, A. Carocci, and A. Catalano, The effects of cadmium toxicity, Int. J. Environ. Res. Public Health, 17, 3782 (2020).   DOI
42 M. K. Jha, S. Joshi, R. K. Sharma, A. A. Kim, B. Pant, M. Park, and H. R. Pant, Surface Modified Activated Carbons: Sustainable bio-based materials for environmental remediation, Nanomaterials, 11, 3140 (2021).   DOI
43 D. Norton-Brandao, S. M. Scherrenberg, and J. B. V. Lier, Reclamation of used urban waters for irrigation purposes-A review of treatment technologies, J. Environ. Manage., 122, 85-98 (2013).   DOI
44 F. Fu and Q. Wang, Removal of heavy metal ions from waste-waters: A review, J. Environ. Manage., 92, 407-418 (2011).   DOI
45 S. M. Abegunde, K. S. Idowu, O. M. Adejuwon, and T. Adeyemi-Adejolu, A review on the influence of chemical modification on the performance of Adsorbents, Resour. Environ. Sustain., 1, 100001 (2020).
46 Z. Yuna, Review of the Natural, modified, and synthetic zeolites for heavy metals removal from wastewater, Environ. Eng. Sci., 33, 443-454 (2016).   DOI
47 S. Mao and M. Gao, Functional organoclays for removal of heavy metal ions from water: A review, J. Mol. Liq., 334, 116143 (2021).   DOI
48 B. Liu, A. Khan, K-H. Kim, D. Kukkar, and M. Zhang, The adsorptive removal of lead ions in aquatic media: Performance comparison between advanced functional materials and conventional materials, Crit. Rev. Environ. Sci. Technol., 50, 2441-2483 (2020).   DOI
49 Z. Wang and S. M. Cohen, Postsynthetic covalent modification of a neutral metal-organic framework, J. Am. Chem. Soc., 129, 12368-12369 (2007).   DOI
50 L. Fu, S. Wang, G. Lin, L. Zhang, Q. Liu, H. Zhou, C. Kang, S. Wan, H. Li, and Sheng Wen, Post-modification of UiO-66-NH2 by resorcyl aldehyde for selective removal of Pb(II) in aqueous media, J. Clean. Prod., 229, 470-479 (2019).   DOI
51 Y. Huang, X. Zeng, L. Guo, J. Lan, L. Zhang, and D. Cao, Heavy metal ion removal of wastewater by zeolite-imidazolate frameworks, Sep. Purif. Technol., 194, 462-469 (2018).   DOI
52 Y. Chen, X. Bai, and Z. Ye, Recent progress in heavy metal ion decontamination based on metal-organic frameworks, Nanomaterials, 11, 1481 (2020).
53 G-R. Xu, Z-H. An, K. Xu, Q. Liu, R. Das, and He-Li Zhao, Metal organic framework (MOF)-based micro/nanoscaled materials for heavy metal ions removal: The cutting-edge study on designs, synthesis, and applications, Coord. Chem. Rev., 427, 213554 (2021).   DOI
54 X. R. Li, X. C. Yang, H. G. Xue, H. Pang, and Q. Xu, Metal-organic frameworks as a platform for clean energy applications, EnergyChem, 2, 100027 (2020).   DOI
55 M. Eddaoudi, J. Kim, N. Rosi, D. Vodak, J. Wachter, M. O'Keeffe, and O. M. Yaghi, Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage, Science, 295, 469-472 (2002).   DOI
56 K. Byber, D. Lison, V. Verougstraete, H. Dressel, and P. Hotz, Cadmium or cadmium compounds and chronic kidney disease in workers and the general population: a systematic review, Crit. Rev. Toxicol., 46, 191-240 (2016).   DOI
57 L. Zhang, J. Wang, T. Du, W. Zhang, W. Zhu, C. Yang, T. Yue, J. Sun, T. Li, and J. Wang, NH2-MIL-53(Al) metal-organic framework as the smart platform for simultaneous high-performance detection and removal of Hg2+, Inorg. Chem., 58, 12573-12581 (2019).   DOI
58 M. Mariana, A. Khalil, E. M. Mistar, E. B. Yahya, T. Alfatah, M. Danish, and M. Amayreh, Recent advances in activated carbon modification techniques for enhanced heavy metal adsorption, J. Water Process Eng., 43, 102221 (2021).   DOI
59 Z. Wang, K. K. Tanabe, and S. M. Cohen, Accessing postsynthetic modification in a series of metal-organic frameworks and the influence of framework topology on reactivity, Inorg. Chem., 48, 296-306 (2009).   DOI
60 K. Wang, J. Gu, and N. Yin, Efficient removal of Pb(II) and Cd(II) using NH2-functionalized Zr-MOFs via rapid microwave-promoted synthesis, Ind. Eng. Chem. Res., 56, 1880-1887 (2017).   DOI
61 Z. Wang and S. M. Cohen, Postsynthetic modification of metal-organic frameworks, Chem. Soc. Rev., 38, 1315-1329 (2009).   DOI
62 S. J. Garibay, Z. Wang, K. K. Tanabe, and S. M. Cohen, Postsynthetic modification: A versatile approach toward multifunctional metal-organic frameworks, Inorg. Chem., 48, 7341-7349 (2009).   DOI
63 B. L. Zhang, W. Qiu, P. P. Wang, Y. L. Liu, J. Zou, L. Wang, and J. Ma, Mechanism study about the adsorption of Pb(II) and Cd(II) with iron-trimesic metal-organic frameworks, Chem. Eng. J., 385, 123507 (2020).   DOI
64 H. Li, L. B. Li, R. B. Lin, W. Zhou, Z. J. Zhang, S. C. Xiang and B. L. Chen, Porous metal-organic frameworks for gas storage and separation: Status and challenges, EnergyChem, 1, 100006 (2019).   DOI
65 P. Samanta, A. V. Desai, S. Sharma, P. Chandra, and S. K. Ghosh, Selective recognition of Hg2+ ion in water by a functionalized metal-organic framework (MOF) based chemodosimeter, Inorg. Chem., 57, 2360-2364 (2018).   DOI
66 M. X. Wu and Y. W. Yang, Metal-organic framework (MOF)-based drug/cargo delivery and cancer therapy, Adv. Mater., 29, 1606134 (2017).   DOI
67 R. Banerjee, H. Furukawa, D. Britt, C. Knobler, M. O'Keeffe, and O. M. Yaghi, Control of pore size and functionality in isoreticular zeolitic imidazolate frameworks and their carbon dioxide selective capture properties, J. Am. Chem. Soc., 131, 3875-3877 (2009).   DOI
68 X. Yang and Q. Xu, Bimetallic metal-organic frameworks for gas storage and separation, Cryst. Growth Des., 17, 1450-1455 (2017).   DOI
69 T. Devic, P. Horcajada, C. Serre, F. Salles, G. Maurin, B. Moulin, D. Heurtaux, G. Clet, A. Vimont, J.-M. Greneche, B. L. Ouay, F. Moreau, E. Magnier, Y. Filinchuk, J. Marrot, J.-C. Lavalley, M. Daturi, and G. Ferey, Functionalization in flexible porous solids: Effects on the pore opening and the host-guest interactions, J. Am. Chem. Soc., 132, 1127-1136 (2010).   DOI
70 S. S. Y. Chui, S. I. M. -F. Lo, J. P. H. Charmant, A. G. Orpen, and I. D. Williams, A chemically functionalizable nanoporous material [Cu3(TMA)2(H2O)3]n, Science, 283, 1148 (1999).   DOI
71 F. Luo, J. L. Cheng, L. L. Dang, W. N. Zhou, H. L. Lin, J. Q. Li, S. J. Liu, and M. B. Luo, High-performance Hg2+ removal from ultra-low concentration aqueous solution using both acylamide and hydroxyl-functionalized metal-organic framework, J. Mater. Chem. A, 3, 9616-9620 (2015).   DOI
72 L. Esrafili, M. Gharib, and A. Morsali, The targeted design of dual-functional metal-organic frameworks (DF-MOFs) as highly efficient adsorbents for Hg2+ ions: synthesis for purpose, Dalton Trans., 48, 17831-17839 (2019).   DOI
73 R. Shahrokhi-Shahraki, C. Benally, M. G. El-Din, and J. Park, High efficiency removal of heavy metals using tire-derived activated carbon vs commercial activated carbon: Insights into the adsorption mechanisms, Chemosphere, 264, 128455 (2021).   DOI
74 Y. Zhou, W. Li, W. Qi, S. Chen, Q. Tan, Z. Wei, L. Gong, J. Chen, and W. Zhou, The comprehensive evaluation model and optimization selection of activated carbon in the O3-BAC treatment process, J. Water Process Eng., 40, 101931 (2021).   DOI
75 I. Ali, M. Asim, and T. A. Khan, Low cost adsorbents for the removal of organic pollutants from wastewater, J. Environ. Manage., 113, 170-183 (2012).   DOI
76 S. Hadi and K. Tahereh, Investigation of nitric acid treatment of activated carbon for enhanced aqueous mercury removal, J. Ind. Eng. Chem., 16, 852-858 (2010).   DOI
77 S. Norouzi, M. Heidari, V. Alipour, O. Rahmanian, M. Fazlzadeh, F. M. moghadam, H. Nourmoradi, B. Goudarzi, and K. Dindarloo, Preparation, characterization and Cr(VI) adsorption evaluation of NaOH-activated carbon produced from Date Press Cake; an agro-industrial waste, Bioresour. Technol., 258, 48-56 (2018).   DOI
78 M. Jain, M. Yadav, T. Kohout, M. Lahtinen, V. K. Garg, and M. Sillanpaa, Development of iron oxide/activated carbon nanoparticle composite for the removal of Cr(VI), Cu(II) and Cd(II) ions from aqueous solution, Water Resour. Ind., 20, 54-74 (2018).   DOI
79 V. Nejadshafieea and M. R. Islamia, Adsorption capacity of heavy metal ions using sultone-modified magnetic activated carbon as a bio-adsorbent, Mater. Sci. Eng. C, 101, 42-52 (2019).   DOI
80 N. Yin, K. Wang, Y. Xia, and Z. Li, Novel melamine modified metal-organic frameworks for remarkably high removal of heavy metal Pb (II), Desalination, 430, 120-127 (2018).   DOI
81 F. Kazemi, H. Younesi, A. A. Ghoreyshi, N. Bahramifar, and A. Heidari, Thiol-incorporated activated carbon derived from fir wood sawdust as an efficient adsorbent for the removal of mercury ion: Batch and fixed-bed column studies, Process Saf. Environ. Prot., 100, 22-35 (2016).   DOI
82 S. Xia, Y. Huang, J. Tang, and L. Wang, Preparation of various thiol-functionalized carbon-based materials for enhanced removal of mercury from aqueous solution, Environ. Sci. Pollut. Res., 26, 8709-8720 (2019).   DOI
83 L. F. Liang, Q. Chen, F. Jiang, D. Yuan, J. Qian, G. Lv, H. Xue, L. Liu, H.-L. Jiang, and M. Hong, In situ large-scale construction of sulfur-functionalized metalorganic framework and its efficient removal of Hg(II) from water, J. Mater. Chem. A, 4, 15370-15374 (2016).   DOI
84 S. M. Waly, A. M. El-Wakil, W. M. A. El-Maaty, and F. S. Awad, Efficient removal of Pb(II) and Hg(II) ions from aqueous solution by amine and thiol modified activated carbon, J. Saudi Chem. Soc., 25, 101296 (2021).   DOI
85 L. Fu, S. Wang, G. Lin, L. Zhang, Q. Liu, J. Fang, C. Wei, and G. Liu, Post-functionalization of UiO-66-NH2 by 2,5-Dimercapto-1,3,4-thiadiazole for the high efficient removal of Hg(II) in water, J. Hazard. Mater., 368, 42-51 (2019).   DOI
86 K. Chen, Z. Zhang, K. Xia, X, Zhou, Y. Guo, and T. Huang, Facile synthesis of thiol-functionalized magnetic activated carbon and application for the removal of mercury(II) from aqueous solution, ACS Omega, 4, 8568-8579 (2019).   DOI
87 F. Y. Yi, D. Chen, M. K. Wu, L. Han, and H. L. Jiang, Chemical sensors based on metal-organic frameworks, ChemPlusChem, 81, 675-690 (2016).   DOI
88 N. Wang, X.-K. Ouyang, L.-Y. Yang, and A. M. Omer, Fabrication of a magnetic cellulose nanocrystal/metal-organic framework composite for removal of Pb(II) from water, ACS Sustain. Chem. Eng., 5, 10447-10458 (2017).   DOI
89 S. Jamshidifard, S. Koushkbaghi, S. Hosseini, S. Rezaei, A. Karamipour, A. J. rad, and M. Irani, Incorporation of UiO-66-NH2 MOF into the PAN/chitosan nanofibers for adsorption and membrane filtration of Pb(II), Cd(II) and Cr(VI) ions from aqueous solutions, J. Hazard. Mater., 368, 10-20 (2019).   DOI
90 K. Gupta, P. Joshi, R. Gusain, and O. P. Khatri, Recent advances in adsorptive removal of heavy metal and metalloid ions by metal oxide-based nanomaterials, Coord. Chem. Rev., 445, 214100 (2021).   DOI
91 R. Ricco, K. Konstas, M. J. Styles, J. J. Richardson, R. Babarao, K. Suzuki, P. Scopecec, and P. Falcaro, Lead(II) uptake by aluminium based magnetic framework composites (MFCs) in water, J. Mater. Chem. A, 3, 19822-19831 (2015).   DOI
92 F. Ke, J. Jiang, Y. Li, J. Liang, X. Wan, and S. Ko, Highly selective removal of Hg2+ and Pb2+ by thiol-functionalized Fe3O4@metal-organic framework core-shell magnetic microspheres, Appl. Surf. Sci., 413, 266-274 (2017).   DOI
93 D. C. da Silva Alves, B. Healy, L. A. de Almeida Pinto, T. R. S. Cadaval, and C. B. Breslin, Recent developments in chitosan-based adsorbents for the removal of pollutants from aqueous environments, Molecules, 26, 594 (2021).   DOI
94 X.-X. Liang, N. Wang, Y.-L. Qu, L.-Y. Yang, Y.-G. Wang, and X.-K. Ouyang, Facile preparation of metal-organic framework (MIL-125)/chitosan beads for adsorption of Pb(II) from aqueous solutions, Molecules, 23, 1524 (2018).   DOI