• Title/Summary/Keyword: Heavy maintenance

Search Result 306, Processing Time 0.028 seconds

Research on non-destructive testing technology for existing bridge pile foundations

  • Zhang, Xue-feng;Ni, Ying-sheng;Song, Chunxia;Xu, Dong
    • Structural Monitoring and Maintenance
    • /
    • v.7 no.1
    • /
    • pp.43-58
    • /
    • 2020
  • Pile foundations of existing bridges lie in soil and water environment for long term and endure relatively heavy vertical loads, thus prone to damages, especially after stricken by external forces, such as earthquake, collision, soil heap load and etc., and the piles may be injured to certain degrees as well. There is a relatively complete technical system for quality inspection of new bridge pile foundations without structures on the top. However, there is no mature technical standard in the engineering community for the non-destructive testing technology specific to the existing bridge pile foundations. The quality of bridge pile foundations has always been a major problem that plagues bridge maintenance. On the basis of many years' experiences in test engineering and theoretical studies, this study developed a new type of detection technology and equipment for the existing bridge piles.

The Effects on Structures caused by the Replacement of Bridge Bearing (교량구조물의 받침 교체 효과)

  • Park, Chang-Ho;Ku, Bon-Sung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.6 no.4
    • /
    • pp.209-217
    • /
    • 2002
  • The effects on structures caused by the replacement of the bridge bearings are investigated in this study. The bearings of the bridge are seriously deteriorated because of the breakage of lower concrete and the corrosion of the bearing itself. Also, the negative reaction states are created at some bearings on the abutment. Then, the bridge has occurred excessive vibrations and severe noise and impact whenever heavy trucks pass the above joints. The existing bearings are replaced using the adjustable bearing. The height of the bearings is adjusted to minimize the level difference of above joint and also to induce the appropriate distribution of live loads The effects of replacing the bearings are investigated by measuring the behaviors of the bridge without and with replacing works. The results without replacing the bearing show that the distribution of displacements and stresses is distorted in comparison with the analytical results. Also the bridge without replacing the bearing shows that the impact and vibration from the heavy trucks are larger than those with replacing the bearing. Load carrying capacity of the bridge increase about 1.8 times through replacing the bearing. The above results show that the structural performance of the bridge is improved by replacing only bridge bearings.

Human Risk Assessment of Soil Contaminated with Heavy Metal by Waste Reclaimed in Railway Maintenance Site (철도정비부지 내 매립된 폐기물에 의해 중금속으로 오염된 토양의 인체위해성 평가)

  • Braatz, Hatsue Minato;Jung, Minjung;Moon, Seheum;Park, Jinkyu
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.27 no.3
    • /
    • pp.63-74
    • /
    • 2019
  • This study carried out a human risk assessment of Cu, Pb, Zn and Ni contained in soil contaminated by improperly buried heavy metal wastes in railway sites. The purpose of the human risk assessment is to derive the need for soil remediation and factors that should be considered during soil remediation. Risk assessment was performed in accordance with the Environment Ministry's Risk Assessment Guidelines. The results of the human risk assessment of contaminated heavy metal soil contaminated by improperly buried waste in the railway site were presented after the process of determining exposure concentration, calculating exposure, and determining carcinogenic hazards. The heavy metal content of soil is 621.3 Cu mg/kg, 2,824.5 Pb mg/kg, 1,559.1 Zn mg/kg and 45 Ni mg/kg, which is the exposure concentration of the target contaminant. The results of human exposure according to exposure pathways were high in the order of soil outdoor dust >soil ingestion >soil contact, and Pb >Zn >Cu >Ni were higher in order of contaminant. The carcinogenic and noncarcinogenic risks of soil contaminated with heavy metal waste were higher than the allowable carcinogenic risks (TCR> $10^{-6}$) and the risk index (Hi < 1.0) suggested by USEPA. Therefore, the site needs to be remediated.

A Vibration Isolation Design for Engine Room Opening Deck around Heavy Spare Parts of the Main Engine (Main Engine의 Heavy Spare Parts가 설치된 Engine Room Opening Deck의 방진 설계 사례)

  • Jeon, Yong-Hoon;Lim, Gu-Sub;Jeong, Tae-Seok
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2009.09a
    • /
    • pp.93-96
    • /
    • 2009
  • Foundation structure for the main engine heavy spare parts in the engine room is susceptible to resonance problem due to outfitting weight. In addition the deck floor has a large opening for the main engine installation and maintenance, which further weakens the foundation structure. To reinforce the weak structure, two types of approaches have been used; 1) insert an H-pillar below or above the floor and 2) increase the stiffener size. In this paper, the H-pillar approach is used to solve the vibration problem of the foundation structure in the engine room opening area. A commercial program is used to analyze the vibration problem ad to find the location and the size of the H-pillar. Modal test at the quay and on-board vibration measurement during the sea trial have confirmed the validity of inserting an H-pillar below the floor.

  • PDF

A numerical and experimental approach for optimal structural section design of offshore aluminium helidecks

  • Seo, Jung Kwan;Park, Dae Kyeom;Jo, Sung Woo;Park, Joo Shin;Koo, Jeong Bon;Ha, Yeong Su;Jang, Ki Bok
    • Structural Engineering and Mechanics
    • /
    • v.59 no.6
    • /
    • pp.993-1017
    • /
    • 2016
  • Helicopters are essential for supporting offshore oil and gas activities around the world. To ensure accessibility for helicopters, helideck structures must satisfy the safety requirements associated with various environmental and accidental loads. Recently, offshore helideck structures have used aluminium because of its light weight, low maintenance requirements, cost effectiveness and easy installation. However, section designs of aluminum pancakes tend to modify and/or change from the steel pancakes. Therefore, it is necessary to optimize section design and evaluate the safety requirements for aluminium helideck. In this study, a design procedure was developed based on section optimization techniques with experimental studies, industrial regulations and nonlinear finite element analyses. To validate and verify the procedure, a new aluminium section was developed and compared strength capacity with the existing helideck section profiles.

Dynamic analysis of multi-functional maintenance platform based on Newton-Euler method and improved virtual work principle

  • Li, Dongyi;Lu, Kun;Cheng, Yong;Zhao, Wenlong;Yang, Songzhu;Zhang, Yu;Li, Junwei;Shi, Shanshuang
    • Nuclear Engineering and Technology
    • /
    • v.52 no.11
    • /
    • pp.2630-2637
    • /
    • 2020
  • The structure design of divertor Multi-Functional Maintenance Platform (MFMP) actuated by hydraulic system for China Fusion Engineering Test Reactor (CFETR) was introduced in this paper. The model of MFMP was established according to maintenance requirements. In this paper, Newton-Euler method and the improved virtual work principle were used, the equivalent driving force of each actuator was obtained through the equivalent Jacobian inverse matrix derived from velocity relationship among the components. The accuracy of the model was verified by ADAMS simulation. The stability control of the heavy-duty components driven by hydraulic cylinders based on Newton-Euler method and improved virtual work principle was established.

A Study on Virtual Training System for Army Thermal Equipment Maintenance Education (육군 화력장비 정비교육을 위한 가상훈련시스템 연구)

  • Song, Seong-Heon;Song, Eun-Jee
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2019.05a
    • /
    • pp.205-207
    • /
    • 2019
  • Special training soldier for thermal equipment during army heavy equipment maintenance education is small training equipment and many trainees have few opportunities for practical training, and there is a high risk of safety accidents during maintenance training. Because practical training is limited and repeated practice is difficult, a training system is needed. In this study, we propose a virtual training system that can reduce the training cost beyond the time and space, enable realistic experiential training, reflect the standard maintenance manual, and train teamwork. The virtual training system using the virtual augmented reality is a system that can reduce the cost beyond the space and time and can be practically practiced. The first-person virtual training system using HMD, which is the three-dimensional display system proposed in this study, is suitable for army thermal equipment maintenance education system. The proposed system is expected to be useful for maintenance training of other equipments and other groups because it has good scalability.

  • PDF

Evaluation of Static Behaviour of Orthotropic Steel Deck Considering the Loading Patterns (하중재하 패턴을 고려한 강바닥판의 정적거동 평가)

  • Kim, Seok Tae;Huh, Young
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.2
    • /
    • pp.98-106
    • /
    • 2011
  • The deck of steel box girder bridges is composed of deck plate, longitudinal rib, and transverse ribs. The orthotropic steel decks have high possibility to fatigue damage due to numbers of welded connection part, the heavy contact loadings, and the increase of repeated loadings. Generally, the local stress by the repeated loadings of heavy vehicles causes the orthotropic steel deck bridge to fatigue cracks. The increase of traffic volume and heavy vehicle loadings are promoted the possibility of fatigue cracks. Thus, it is important to exactly evaluate the structural behavior of bridge considering the contact loading area of heavy vehicles and real load patterns of heavy trucks which have effects on the bridge. This study estimated the effect of contact area of design loads and real traffic vehicles through the finite element analysis considering the real loading conditions. The finite element analysis carried out 4 cases of loading patterns in the orthotropic steel deck bridge. Also, analysis estimated the influence of contact area of real truck loadings by the existence of diaphragm plate. The result of finite element analysis indicated that single tire loadings of real trucks occurred higher local stress than one of design loadings, and especially the deck plate got the most influence by the single tire loading. It was found that the diaphragm attachment at joint part of longitudinal ribs and transverse ribs had no effects on the improvement of structural performance against fatigue resistance in elastic analysis.

Characteristics Evaluation of Radiation Shielding Materials Used Waste Glass and Chelate Resins (폐유리와 킬레이트 수지를 사용한 방사선 차폐재의 재료특성 평가)

  • Kim, Hyo-Jung;Jang, Jong-Min;Song, Young-Soon;Noh, Jae-Ho;Yi, Seong-Tae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.3
    • /
    • pp.56-64
    • /
    • 2019
  • Various approaches have been attempted to develop recycling technologies related to industrial waste resources containing metals. Among them, glass is not decomposed into microorganisms, so landfill is not suitable, and interest in the recycling of waste glass is increasing. In this paper, by incorporating chelate resin to suppress the elution of heavy metals in waste glass and using waste glass as a fine aggregate and we want to evaluate the strength, drying shrinkage, alkali-silica reaction and heavy metal leaching of shielded filler materials and to provide basic data for utilizing waste glass as an economical and environmentally friendly shielding filler. As a result of the test, it was found that the use of waste glass as a fine aggregate was effective in the development of strength, but the incorporation of chelate resin had an influence on the strength development. In addition, the addition of chelate resin was effective in improving drying shrinkage but it was found to affect the alkali - silica reaction. As a result of the heavy metal leaching test, the KSLP test method satisfies all the criteria for heavy metal leaching. However, in case of lead, the limit of US ANSI 67-2007a was exceeded and further study should be done.

LCC Analysis of Steel Plate Bridge Deck Pavement Through Internalization of Improved Functions (기능 개선의 내재화를 통한 강상판 교면포장의 LCC 분석)

  • Baek, Jae Wook;Park, Tae Hyo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.5
    • /
    • pp.113-123
    • /
    • 2011
  • LCC analysis is a method that coordinates with function evaluation for value improvement, rather than a separate one for cost evaluation. Although its accuracy is rising, materials and structural types developed or applied relatively recently have yet to obtain a sufficient maintenance profile DB, inducing reliability to reduce from difficulties in estimating maintenance records. Based on the above mentioned background, this paper presents the LCC methodology of coordinating functional intensification matters with cost for analysis on alternatives with difficulties in setting maintenance profile. Recently, steel plate bridge deck pavements are faced with problems such as plastic deformation due to the increase in heavy vehicles and traffic, promoting the development of a new compound pavement. This paper execute LCC analysis by mentioning case studies of SMA, Guss and PSMA pavements to include performance scale compared between alternatives as relative evaluation coefficients into the maintenance profile.