• Title/Summary/Keyword: Heavy floor impact sound

Search Result 123, Processing Time 0.025 seconds

Research about correlation of slab vibration mode and heavy-weight floor impact sound (슬래브의 동특성과 중량충격음의 상관관계에 관한 연구)

  • Chung, J.Y.;Lee, S.W.;Im, J.B.;Jeong, G.C.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.839-843
    • /
    • 2008
  • Receiving room's floor impact sound level is been influenced to various factor of slab thickness, room size, structure etc. This study examined the noise of upper part slab and room mode in receiving room to be importance factor that influence in receiving room level among this factors. According to this study, vibration mode in slab and room mode are concentrated on frequency that is high level relatively. This causes bad effect in floor impact sound level. Therefore, method to reduce floor impact sound level is to change vibration mode using slab upper part's resilient material or reduce room mode in receiving room.

  • PDF

Consideration on Rating Method for Heavy Impact Sound Taking Account of the Characteristics of Floor Vibration and Impact Sources (바닥 진동 거동 및 충격원 특성을 고려한 바닥 중량 충격음 평가방법 고찰)

  • Lee, Min-Jung;Choi, Hyun-Ki
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.4
    • /
    • pp.69-79
    • /
    • 2017
  • The purpose of this study is to reconsider the rating method for the floor impact sound insulation performance in current criterion. Although there are some arguments about proper standard heavy impact source with reproducibility of actual impact source in residence building, bang machine is adopted as the only standard heavy impact source in domestic criterion. To inspect the rating methods of evaluation criteria, this study conducted vibration test for both of standard heavy impact sources and actual impact sources. Using the test results, the floor impact sound insulation performance levels were assessed by each of several criteria. In addition, low frequency noise beyond current criteria was evaluated. Consequently, the floor impact sound levels have different performance levels according to adopted criteria, and measured floor impact sounds are bound to annoy the neighbors in the low frequency range. Current criteria does not consider the spectrum characteristics of floor impact sound according to impact sources and low frequency noise. This may cause the difference between the floor impact sound insulation performance level and human perception. Thus current criterion needs to be complemented to reflect the spectrum characteristics of floor impact sound levels according to impact sources and sound pressure levels in low frequency range.

A Study on Floor Impact Sound Insulation Performance of Cross-Laminated Timber (CLT): Focused on Joint Types, Species and Thicknesses

  • Yeon-Su HA;Hyo-Jin LEE;Sang-Joon LEE;Jin-Ae SHIN;Da-Bin SONG
    • Journal of the Korean Wood Science and Technology
    • /
    • v.51 no.5
    • /
    • pp.419-430
    • /
    • 2023
  • In this study, the floor impact sound insulation performance of Korean domestic Cross-Laminated Timber (CLT) slabs was evaluated according to their joint types, species and thicknesses in laboratory experiments. The sound insulation performance of the CLT has not been investigated before, thus, this study was conducted to quantify basic data on floor impact sound insulation performance of CLT slabs. 5-ply and 150 mm thick CLT panels made of 2 species, Larix kaempferi and Pinus densiflora, were used for the study. The CLT panels were assembled by 3 types of inter-panel joints to form floor slabs: spline, butt and half-lap. And the 150 mm thick Larix CLT slabs were stacked to the thicknesses of 300 mm and 450 mm. The heavy-weight floor impact sound insulation performance of the 150 mm CLT slabs were evaluated to be 70 dB for the Larix slabs and 71.6 dB for the Pinus slabs, and the light-weight floor impact sound insulation performance, 78.3 dB and 79.6 dB, respectively. No significant difference in the sound insulation performance was found between the slabs of the 2 species or among the 3 types of joints. The reduction of 1 dB in the heavy-weight floor impact sound and 1.6 dB in the light-weight floor impact sound per 30 mm increase in thickness were confirmed through the experiments. This study can be viewed as the basic research for the evaluation of floor impact sound insulation performance of CLT.

Investigation of the heavy-weight floor impact sound field in a testing building with bearing wall structure (벽식구조 표준시험동에서 중량충격음장에 관한 연구)

  • Yoo, Seung-Yup;Lee, Sin-Young;Jeon, Jin-Yong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.969-973
    • /
    • 2007
  • The heavy-weight floor impact sound field of the receiving room in a testing building with bearing wall structure was investigated using bang machine and impact ball. The sound field was investigated through the impact sound pressure level distribution by the field measurement and computational analysis. Predicted sound field using the computational analysis agree with measurement result in the low frequency band. Result shows that standard deviations of the single number rating value are about 2dB in each impact source. Particularly, impact sound pressure level at 120cm height in 63Hz octave band was 5dB lower than spatial averaging value. It was found that receiving positions in the ministry of construction and transportation notice should be reconsidered.

  • PDF

Experimental Studies for Analysing of Characteristics of Floor Impact Sound through a Scale Model with Box-frame Type Structure (벽식구조 바닥판의 중량충격음 특성 분석을 위한 축소모형의 활용)

  • Yoo, Seung-Yup;Jeon, Jin-Yong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.9
    • /
    • pp.805-812
    • /
    • 2011
  • This study investigated the characteristics of heavy-weight floor impact sounds of box-frame type structure using 1:10 scale model. Ten types of floor structures(bare slabs and floating floors) were evaluated in terms of dynamic stiffness and loss factor. Floor vibrations and radiated sounds generated by simulated impact source were also measured. The results showed that the bakelite was appropriate for simulating concrete slab in the 1:10 scale model, and surface velocity and sound pressure level of concrete slab measured from the scale model showed similar tendencies with the results from in-situ in frequency domain. It was also found that dynamic behaviors of layered floor structures in the 1:10 scale model were similar to those in a real scale. Therefore, the use of 1:10 scale model would be useful for evaluating the heavy-weight floor impact sound insulation of layered floor structures when the frequency-dependent dynamic properties of each material are known.

Investigation of Floor Impact Sound Levels in Rahmen Structure Multi-story Residential Buildings (라멘복합구조 공동주택의 바닥충격음 실태)

  • 정정호;송희수;전진용
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.308-311
    • /
    • 2004
  • It is reported that there is a limit in increasing heavy-weight impact noise isolation performance of the load bearing wall system apartments to meet the regulation of the Ministry of Construction and Transportation (MOCT). To increase the heavy-weight impact noise isolation performance, improvement in structural systems such as increasing concrete slab thickness and application of rahmen structure were proposed. In this study floor impact sound levels from toil apartments with two rahmen structure multi-story residential buildings were measured before the construction of the buildings finished. Measurements were made at living room and two bedrooms at each apartment when the finishing processes were finished. The average value of light-weight impact sound level from ten apartments was 56dB (L'$\sub$n,Aw/). The heavy-weight impact sound level was 44dB (L'$\sub$i.Fmax.Aw/) and the impact sound level of the impact ball was 41dB(L'$\sub$i.Fmax.Aw/), As a result floor impact noises at the rahmen structure system were lower than the regulation level.

  • PDF

Subjective Assessment of Simulated Heavy Floor Impact Sounds for Alternative Rating Method (현행 중량바닥충격음 평가방법 개선을 위한 주관평가실험)

  • Shin, Hoon;Back, Geon-Jong;Song, Min-Jeong;Jang, Gil-Soo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.581-586
    • /
    • 2008
  • This study aims to examine the existing single rating index in terms of level reduction limit of heavy-weight floor impact sound. To achieve this goal, sounds which have same loudness according to rating methods were suggested to subjects. And followings are results. 1) The rating method of measurement frequency level average is more suitable than that of other methods which are dependent on specific frequency for rating heavy-weight floor impact sound. 2) Level average for measurement frequency of 31.5Hz - 500Hz is more correspondent to psycho-acoustic response than that of measurement frequency of 63Hz - 500Hz which is for KS F 2863-2, existing rating method.

  • PDF

Subjective Assessment of Simulated Heavy Floor Impact Sounds for Alternative Rating Method (현행 중량바닥충격음 평가방법 개선을 위한 주관평가실험)

  • Shin, Hoon;Kim, Sun-Woo;Jang, Gil-Soo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.3
    • /
    • pp.282-287
    • /
    • 2009
  • This study aims to examine the existing single rating index in terms of level reduction limit of heavy-weight floor impact sound. To achieve this goal, sounds which have same loudness according to rating methods were suggested to subjects. And followings are results. 1) The rating method of measurement frequency level average is more suitable than that of other methods which are dependent on specific frequency for rating heavy-weight floor impact sound. 2) Level average for measurement frequency of $31.5\;Hz{\sim}500\;Hz$ is more correspondent to psycho-acoustic response than that of measurement frequency of $63\;Hz{\sim}500\;Hz$ which is for KS F 2863-2, existing rating method.

A Study on the Insulation Performance of Impact Sound Level by Striking Location of Floor Slab (바닥 슬라브의 가진 위치에 따른 차음성능에 관한 연구)

  • Song, Pil-Dong;Park, Myung-Kil;Ham, Jin-Sik
    • Proceeding of Spring/Autumn Annual Conference of KHA
    • /
    • 2003.11a
    • /
    • pp.73-76
    • /
    • 2003
  • This paper is contents about method to measure interception performance of shock noise of floor slab of apartment house to be simple. In the case of interception performance of light floor impact sound level, according to measurement method, grade of sound insulation performance showed greatly differently. But, in the case of interception performance of heavy floor impact sound level, it was similar result in all measurement method. Therefore, use of simple method of measurement was examined by possible fact in case of interception performance of heavy floor impact sound level.

  • PDF

Evaluation of heavy-weight impact sounds generated by impact ball through classification (주파수 특성 분류를 통한 임팩트 볼 중량충격음의 주관적 평가)

  • Kim, Jae-Ho;Lee, Pyoung-Jik;Jeon, Jin-Yong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.1142-1146
    • /
    • 2007
  • In this studies, subjective evaluation of heavy-weight floor impact sound through classification was conducted. Heavyweight impact sounds generated by an impact ball were recorded through dummy heads in apartment buildings. The recordings were classified according to the frequency characteristics of the floor impact sounds which are influenced by the floor structure with different boundary conditions and composite materials. The characteristics of the floor impact noise were investigated by paired comparison tests and semantic differential tests. Sound sources for auditory experiment were selected based on the actual noise levels with perceptual level differences. The results showed that roughness and fluctuation strength as well as loudness of the heavy-weight impact noise had a major effect on annoyance.

  • PDF