• 제목/요약/키워드: Heating velocity

검색결과 360건 처리시간 0.031초

단속가열식 액체용 극소질량유량 계측기에 관한 수치해석적 연구 (Numerical Study on the Pulse Heating Type Infinitesimal Liquid Mass Flow Meter)

  • 김택영
    • 대한기계학회논문집B
    • /
    • 제39권2호
    • /
    • pp.119-124
    • /
    • 2015
  • 반도체 생산에 사용되는 액체용 극소 질량유량계측기의 새로운 설계 안에 대하여 수치해석적으로 연구하였다. 내경 0.3mm 정도인 원관 외부에 히터선을 일정 폭 권선하고, 히터로부터 일정거리 떨어진 후류에 온도계측용 써미스터선을 권선하는 형상이다. 히터에 단일펄스 가열을 하면 일정시간 경과 후 써미스터가 최고온도를 겪는다. 최고온도까지 걸리는 시간은 질량유량과 거의 반비례하며, 이를 이용하여 질량유량을 계측할 수 있다. 관벽을 통한 전도열전달과 액체유동에 의한 대류열전달이 복합적으로 작용하므로 관내유동의 평균속도와 관벽을 통한 최고온도의 이동속도는 큰 차이를 나타내며, 상호 비선형적인 특성을 보인다. 본 연구에서는 센서관의 내 외경, 히터의 권선폭 및 히터와 써미스터 사이의 거리를 설계변수로 고려하여 수치해석적으로 제안한 설계사항을 분석하였으며, 설계인자의 최적화에 대한 검토를 수행하였다.

격강구(隔薑灸)의 연소(燃燒) 특성(特性)에 관한 실험적(實驗的) 연구(硏究) (Experimental Study on the Characteristics of Combustion in the Indirect Moxibustion with Ginger)

  • 이건목;이건휘;문성재;황병천;국우석;장지연;김양중;장재호;윤주영
    • Journal of Acupuncture Research
    • /
    • 제21권3호
    • /
    • pp.193-214
    • /
    • 2004
  • Objective : The purpose of this study is to investigate the mechanism and effect of moxibustion with ginger objectively, to be used as the quantitative data through the measurement of temperature, and to grasp the thermodynamic characteristics of moxibustion with ginger. Methods : We have selected the indirect moxibustion with ginger among many indirect moxibustions. We produced a slice of ginger to a thickness of 3, 4, 5mm and the moxa cone having a diameter of 8mm, a height of 10mm for making a comparative study of characteristics of moxa cone according to change the density. We have made a comparative study of the thermodynamic characteristics of moxibustion with ginger with or without holes. We measured combustion times and calculated temperatures, temperature gradients in each period during a combustion of moxa. Results : 1. We found out it was not significantly influenced by the existence of the punched holes in a slice of ginger because the punched holes grow smaller immediately. 2. The duration of the preheating period became longer according to thickness of a slice of ginger and was not directly proportional to the density of moxa cone. The duration of the preheating period was extremely short when it burned a 100mg moxa cone. That was influenced by the density of moxa cone. 3. The duration of the heating period became longer according to thickness of a slice of ginger likewise the preheating period bacause the density of moxa cone had effected on the combustion characteristics. The duration of the heating period was extremely long when it burned a 100mg moxa cone. On the other hand the maximum temperature in the heating period was appeared that the combustion with a thin slice of ginger was highest and measured that the large density of moxa cone was higher. But the maximum temperature in the heating period was about $37.8^{\circ}C{\sim}44.2^{\circ}C$respectively lower in others. 4. The duration of the retaining period was some doubling shorter than that of the heating period that is concerned the shape of moxa cone. The temperature measured the close of a retaining period was $36.6^{\circ}C{\sim}41.8^{\circ}C$, that was considerably lower temperature. 5. The mean ascending temperature velocity and the mean descending temperature velocity were $0.042{\sim}0.073^{\circ}C/sec$, $-0.027{\sim}-0.064^{\circ}C/sec$ respectively. Then, the ascending temperature velocity was some faster than the ascending temperature velocity. Conclusions : The quantitative standard for obtaining the effective heating stimulation is that if the slice of ginger made a hole in it, we had to use the needle above 1.5mm diameter. The recommended size of a slice ginger is the 14mm diameter and the 2~3mm thickness. The moxa cone is formed the conical shape that the base diameter was 8mm, the height was 10mm, the density was $600mg/cm^2$.

  • PDF

태양열 공기-물 가열기의 공기 가열 성능 평가 및 열적 성능 개선을 위한 실험적 연구 (Experimental Study for Estimation of Air Heating Performance and Improvement of Thermal Performance of Hybrid Solar Air-water Heater)

  • 최휘웅;김영복;윤정인;손창효;최광환
    • 한국태양에너지학회 논문집
    • /
    • 제37권1호
    • /
    • pp.47-57
    • /
    • 2017
  • Solar energy is one of the important renewable energy resources. It can be used for air heating, hot water supply, heat source of desiccant cooling system and so on. And many researches for enhancing efficiency have been conducted because of these various uses of solar thermal energy. This study was performed to investigate the air heating performance of hybrid solar air-water heater that can heat air and liquid respectively or simultaneously and finding method for improving thermal performance of this collector. This collector has both liquid pipe and air channel different with the traditional solar water and air heater. Fins were installed in the air channel for enhancing the air heating performance of collector. Also air inlet & outlet temperature, ambient temperature and solar collector's inner part temperature were confirmed with different air velocity on similar solar irradiance. As a result, temperature of heated air was shown about $43^{\circ}C$ to $60^{\circ}C$ on the $30^{\circ}C$ of ambient temperature and thermal efficiency of solar collector was shown 28% to 73% with respect to air velocity. Also, possibility of improvement of thermal performance of this collector could be ascertained from the heat transfer coefficient calculated from this experiment. Thus, it is considered that the research for finding optimal structure of hybrid solar air-water heater for enhancing thermal performance might be needed to conduct as further study based on the method for improving air heating performance confirmed in this study.

알루미늄 발포소재의 성형 공정 인자가 기공제어에 미치는 영향 (Effects of Process Parameters on Cell Control of Aluminum Foal Material)

  • 전용필;강충길
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 추계학술대회 논문집
    • /
    • pp.163-166
    • /
    • 1997
  • Aluminium foam material is a highly porous material having complicated cellular structure defined by randomly distributed air pores in metallic matrix. this structure gives the aluminium a set of properties which cannot be achieved by any of conventional treatments. The properties of aluminium foam material significantly depend on its porosity, so that a desired profile of properties can be tailored by changing the foam density. Melting method is the one of foaming processes, which the production has long been considered difficult to realize becaues of such problems as the low foamability of molten metal, the varying size of. cellular structures, solidification shrinkage and so on. These problems, however, have gradually been solved by researchers and some manufacturers are now producing foamed aluminum by their own methods. Most of all, the parameters of solving problem in electric furnace were stirring temperature, stirring velocity, foaming temper:iture, and so on. But it has not considered about those in induction heating, foaming velocity and foaming temperature in semi-solid state yet. Therefore, this paper presents the effects on these parameter to control cell size, quantity and distribution.

  • PDF

Investigation of Cooling Effect of Flow Velocity and Cooler Location in Thermal Nanoimprint Lithography

  • Lee, Woo-Young;Lee, Ki Yeon;Kim, Kug Weon
    • 반도체디스플레이기술학회지
    • /
    • 제11권4호
    • /
    • pp.37-42
    • /
    • 2012
  • Nanoimprint lithography (NIL) has attracted broad interest as a low cost method to define nanometer scale patterns in recent years. A major disadvantage of thermal NIL is the thermal cycle, that is, heating over glass transition temperature and then cooling below it, which requires a significant amount of processing time and limits the throughput. One of the methods to overcome this disadvantage is to improve the cooling performance in NIL process. In this paper, the performance of the cooling system of thermal NIL is numerically investigated by SolidWorks Flow Simulation program. The calculated temperatures of nanoimprint device were verified by the measurements. By using the analysis model, the effects of the change of flow velocity and cooler location on the cooling performance are investigated. For the 6 cases (0.1 m/s, 0.5 m/s, 1 m/s, 3 m/s, 5 m/s, 10 m/s) of flow velocity and for the 6 cases of distances (50 mm, 40 mm, 30 mm, 20 mm, 10 mm, 1 mm) of cooler location, the heat conjugated flow analyses are performed and discussed.

가열되는 회전원판으로의 입자 침착 해석 (Analysis on Particle Deposition on a Heated Rotating Disk)

  • 유경훈
    • 대한기계학회논문집B
    • /
    • 제26권2호
    • /
    • pp.245-252
    • /
    • 2002
  • Numerical analysis was conducted to characterize particle deposition on a horizontal rotating disk with thermophorectic effect under laminar flow field. The particle transport mechanisms considered were convection, Brownian diffusion, gravitational settling and thermophoresis. The averaged particle deposition velocities and their radial distributions for the upper surface of the disk were calculated from the particle concentration equation in a Eulerian frame of reference for rotating speeds of 0∼1000rpm and temperature differences of 0∼5K. It was observed from the numerical results that the rotation effect of disk increased the averaged deposition velocities, and enhanced the uniformity of local deposition velocities on the upper surface compared with those of the disk at rest. It was also shown that the heating of the disk with ΔT=5K decreased deposition velocity over a fairly broad range of particle sizes. Finally, an approximate deposition velocity model for the rotating disk was suggested. The comparison of the present numerical results with the results of the approximate model and the available experimental results showed relatively good agreement between them.

초저온 액화가스 기화기의 열 교환성능 비교에 관한 연구 (Study on the Comparison of Heat Exchange Performance of Liquefied Gas Vaporizer at Super Low Temperature)

  • 김필환;김철표;정효민;정한식;이용훈
    • 설비공학논문집
    • /
    • 제20권10호
    • /
    • pp.679-688
    • /
    • 2008
  • Air-heating vaporizer usually is used to regasify LNG at satellite areas because of the small demand of natural gas there. The common type of air heating vaporizer which exists in the market is the longitudinally finned type with 8 fins, 55 mm fin length and 2mm fin thickness. To contribute in developing an efficient air-heating vaporizer, experiment on finned type air-heating vaporizer using 8 fins, 50mm(fin length) with 2 mm(fin thickness) which exist in the market and 4 fins, 75 mm(fin length) with 2 mm(fin thickness), which is proposed, were conducted. Then, both types of vaporizers are compared. The experiments were conducted in one hour by varying the ambient condition and the length of the vaporizer. The ambient air was controlled so that it has the same temperature, humidity and air velocity with air condition in every season available and the length was varied 4000 mm, 6000 mm and 8000 mm for each type of vaporizer. Additional experiment with longer duration, i.e. In this experiment, the main aspects in analyzing the characteristics of the air heating vaporizer the inlet-outlet enthalpy difference and the outlet temperature of the working fluid. $LN_2$ is used to substitute LNG because of safety reason. The results show that the characteristics of the finned type 4fin75le vaporizer are comparable to finned type 8fin50le vaporizer.

태양열온수기 적용 냉난방시스템의 CFD를 이용한 실내환경 평가 -제1보 바닥면적과 환기횟수를 중심으로- (Estimation of Indoor Environment using CFD of Multi-Purpose System with a Solar Collector -Part 1, focused on floor area and number of ventilation-)

  • 김종열;최광환
    • 한국태양에너지학회 논문집
    • /
    • 제27권3호
    • /
    • pp.55-61
    • /
    • 2007
  • This paper has been conducted to estimate cooling capacity of the dehumidification tower using hot water from a solar water heating system as a energy source of regeneration process when the dehumidification and drying system is applied to room cooling. A solar water heating system was operated and indoor temperature distributions were simulated according to weather conditions when the concerned solution was used to dehumidify room air in the dehumidification tower. Through this simulation researches we found th following results ; It was found that air velocity through supply and return diffusers should be controlled because it can cause uncomfort in dwelling area. It was found that in the sunny morning temperatures of dwelling area 1 and 2 are higher than those of dwelling area 3 and 4. In this research all the calculation results of heating and cooling system supported by solar water heater have confirmed that its cooling capacity could not reach PMV 0, thermal comfort.

고분자불질 및 계면활성제의 유동마찰 저감 특성 비교 연구 (A Comparison Study on Drag Reduction Characteristics of Polymer and Surfactant as Drag Reduction Additive)

  • 조성환;유재성;김성수;정상훈;윤석만
    • 설비공학논문집
    • /
    • 제22권6호
    • /
    • pp.398-403
    • /
    • 2010
  • The drag reduction(DR) of non-ionic surfactant and polymer according to the variation of fluid velocity, temperature and surfactant concentration was investigated experimentally. For this experiment, the kind of surfactant was non ionic amine-oxide and the kinds of polymer were polyacrylamide and xantan gum. An experimental apparatus equipped with one water storage tanks was built and two flow meters, two pressure gauges for data logging system was installed. Results showed that the kinds of polymer, polyacrylamide and xantan gum, had DR of below 20% for below 500 ppm in fluid temperature of $50{\sim}80^{\circ}C$. But the kind of surfactant, amine oxide, had DR of above 40% for 500~1000 ppm in fluid temperature of $50{\sim}80^{\circ}C$. As a result, amin oxide showed better materials to use to the district heating system.

SUS 304 마이크로 와이어 직선화 처리에 관한 연구 (Study on Micro Wire Straightening Process in SUS 304)

  • 신홍규;김남수;김웅겸;홍남표;김병희;김헌영
    • 산업기술연구
    • /
    • 제24권A호
    • /
    • pp.17-22
    • /
    • 2004
  • In the study, we have developed a straightening system for 304 micro wires that are normally used in the medical and semi-conductor fields. To apply heat to the micro wires, we introduced the direct wire heating method which generates the thermal energy by the electrical resistance of the wire itself. To avoid the deterioration of the wire surface by the environment, such as the oxidation or the hydration, the $N_2$ gas was filled in the glass pipe in which the straightening process was being performed. A precision tension meter was also attached to control the tension of the wire during the heating and straightening process. In order to control the straightening process, several experimental investigations with varying the tension, the feeding velocity and the temperature (current) was carried out. As a result of experiments, we obtained the optimal processing conditions satisfying the straightness requirement of the micro wires.

  • PDF