• Title/Summary/Keyword: Heating Pipe

Search Result 346, Processing Time 0.026 seconds

A Study on the Forming Process Development of a Long-neck Flange Using a Long Pipe (긴 관을 이용한 롱넥플랜지 성형공정 개발에 관한 연구)

  • Choe, Gan-Dae;Gang, U-Jin;Bae, Won-Byeong;Jo, Jong-Rae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.8
    • /
    • pp.212-219
    • /
    • 2002
  • The pipe with a long-neck flange is widely used in power plants, chemical plants, and shipbuilding companies. Now the pipe with a long-neck flange is manufactured by welding a thick flange to a pipe. But this long-neck flange pipe has some defects in the welding region such as unfitting and local thermal fatigue, which weaken the strength around the neck of the flange. Moreover, after welding the flange, the contacting surfaces of the flange have to be machined flat. So, that is uneconomical. Therefore, to solve the above problems of the long-neck flange pipe, a new process, which has no defects around the flange neck, is required. In this study, three forming processes are suggested to get an enhanced long-neck flange. First suggested process consists of conical forming and flange forming. Second and third suggested processes consist of the bulging of a long pipe locally heated by induction coils and the flange forming. The differences between second and third suggestions are the thickness and local heating area of the pipe. That is, the thickness of the initial pipe of third suggestion is larger than that of the final product, and the local heating area is smaller than that of second suggestion. These three suggestions for forming a long-neck flange are simulated by FE analyses with a commercial code DEFORM 2D. Especially, the theoretical result of FE analysis on the first suggestion for forming a long-neck flange is verified by the experiment with aluminum 6063 pipes. From the theoretical and experimental results, it is concluded that three suggested processes are very useful in order to manufacture the pipe with a long-neck flange without any defects.

The Stability Assessment of Backfill Materials and External Loads in Pre-Insulated District Heating Pipes (지역난방 열배관의 외부작용력 및 되메움재의 안정성 확보에 관한 연구)

  • Kim, Jin-Man;Choi, Bong-Hyuck;Ko, Hyun-Il
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.656-661
    • /
    • 2009
  • In this study, theoretical analysis and evaluation tests were performed to assess the pipe stability against compaction equipments and vehicle loads when conventional construction criteria for pre-insulation heating pipes are applied and the alternative material, crushed sand, are used for backfills. The research outcomes shows that (1) the conventional code criteria for pre-insulated heating pipes is well established to support compaction equipments and vehicle loads, (2) the crushed sands as an alternative is usable as backfill materials for pre-insulated heating pipes based on the suitability evaluations of various types of pipes, and (3) the crushed sand agree well with the design consideration of pre-insulated heating pipes construction in the points of economical efficiency and construction criteria.

  • PDF

Performance Evaluation of the Capillary Tube Radiant Floor Cooling & Heating System (모세유관 바닥복사 냉·난방 시스템의 성능평가)

  • Seo, Yu-jin;Kim, Taeyeon;Leigh, Seung-bok
    • KIEAE Journal
    • /
    • v.12 no.4
    • /
    • pp.89-95
    • /
    • 2012
  • At present, many countries are trying to reduce green gas emissions to mitigate the effects of these gases on climate change. Year after year, there have been efforts to cut energy use for heating and cooling. Heating and cooling systems, common in all forms of housing, are increasing due to the constant supply of new housing resulting from improvements in economic growth and the quality of life. Thus, studies related to the design of cooling and heating systems to improve energy efficiency are expanding. Among the new designs, radiant floor cooling and heating systems which use capillary tubes are becoming viable means of reducing energy use. Radiant floor cooling and heating systems which use capillary tubes are creative and sustainable systems in which cool and hot water is circulated into capillary tube which has small diameter. In this study, the cooling and heating performance of this type of capillary tube system is investigated in an experimental study and a simulation using TRNSYS. The results of the experimental study show that under a peak load, a capillary tube radiant floor cooling system using geothermal energy can achieve desired indoor temperature without an additional heat source. The set room air temperature is maintained while the floor surface temperature, PMV and PPD remain within the comfort range. Also, this system is more economic than a packaged air conditioner system due to its higher COP. The results of the simulation show that the capillary tube radiant floor heating system maintains set temperature more stable than a PB pipe radiant floor heating system due to its lower supply temperature of hot water. In terms of energy consumption, the capillary tube radiant floor heating system is more efficient than the PB pipe radiant floor heating system.

Characteristics of Temperature Distribution of Wall, Floor, Air and Hot Water by Burying the Excel Pipe on the Floor and Wall of a Container House (컨테이너하우스의 바닥과 벽면에 엑셀파이프 매설에 의한 벽면, 바닥, 공기, 온수의 온도분포 특성)

  • Cho, Dong-Hyun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.2
    • /
    • pp.94-100
    • /
    • 2022
  • A study was conducted to significantly increase the heat transfer area by simultaneously burying the excel pipe in the floor and wall of a container house, thereby greatly reducing the initial heating time. In addition, a small hot water boiler suitable for the heating load of a small container house with a maximum area of 6 m2 was studied. A wall-mounted hot water boiler was developed as a result of the study. When a hot water boiler is installed outdoors for heating, heat radiation energy is lost in winter from the hot water boiler and hot water pipe due to the low temperature. We propose an approach through which the energy loss was greatly reduced and the temperature of hot water increased in proportion to the operating time. Moreover, as the mass flow rate of the hot water flowing inside the excel pipe increased, the temperature of the hot water decreased. The temperature of the wall and floor surfaces of the container house increased in proportion to the increase in the mass flow rate of hot water flowing inside the excel tube. Natural convection heat transfer was realized from the wall and floor surfaces of the container house, and the heat transfer area was increased by a factor of 3 with respect to heat transfer area limited to the floor by the existing hot water panel. As a result, the initial temperature increase rate was much higher because of the larger heat transfer area.

Development of Pipe-Inserted Cast Die for Press Forming Process Using Ansys and LabView (Ansys와 LabView를 이용한 프레스 성형용 파이프 인서트 주조금형 개발)

  • Lho, Tae-Jung;Choi, Hyeon-Chang
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.12
    • /
    • pp.3559-3566
    • /
    • 2009
  • Heating and cooling plate are separately used for heating and cooling cast dies for footwear parts. However, this has a disadvantage that it takes a long time to manufacture footwear parts etc.. In the present study, the pipe-inserted cast die for press forming process was proposed to substitute heating and cooling plate. The temperature distribution on the pipe-inserted cast die was analyzed by numerical work using a FEM. And its temperature was measured by LabView. A manufacturing by the pipe-inserted cast die for press forming process was effectively verified, especially in a productivity.

A Study on the Deformation of Cable Pipes via Induction Bending (고주파 벤딩을 통한 케이블 파이프의 변형에 관한 연구)

  • Joo, Yi-Hwan;Qin, Zhen;Moon, Seongmin;Lyu, Sung-Ki
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.4
    • /
    • pp.79-84
    • /
    • 2020
  • Induction bending via high-frequency heating is widely used for manufacturing pipe and section steel bends. It allows productivity improvement, unit cost reduction, delivery time compliance, and good mechanical properties. The recent increase in high-end vessels and offshore plants has raised the demand for high-frequency bending, which should improve the product quality and reduce the costs by simplifying the fabrication process; therefore, the characteristics and performance of this technique must be studied and proper design technology is required. During hot pipe bending via induction heating, the outward wall thickness of the pipe is thinned due to tensile stress and this thickness reduction cannot exceed 12.5%. This study focused on pipe bends with a bending curvature of 5D and their optimization design; in particular, the conditions that can both improve the productivity of the high-frequency bending process and keep the maximum thickness reduction below 12.5% were determined.

A Study on the Heat Transfer Characteristics of Loop Type Capillary Heat Pipe (루프형 세관 히트 파이프의 열전달특성에 관한 연구)

  • Yoon, Suck-Hun;Choi, Jae-Hyuck
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.3
    • /
    • pp.346-353
    • /
    • 2000
  • In this paper, heat transfer characteristics of a loop type capillary heat pipe were experimentally investigated for the effect of several fill charge ratios of working fluid and heat loads. This type of heat pipe consists of a heating section, a cooling section and an adiabatic section. The heat pipe used has a 0.002m internal diameter, a 0.34m length in one turn and consists of 19 turns. Heating and cooling sections each have a length of 70mm. Experiments were performed to measure the temperature distributions and the pressure variation of the heat pipe. Heat transfer performance, effective thermal conductivity, boiling heat transfer and condensation heat transfer coefficients were calculated for various operating conditions of heat pipe and it was found that heat transfer characteristics of this type heat pipe were very excellent. As shown by this experimental study, this type of heat pipe operates by oscillatory flow caused by pressure and temperature oscillations.

An Effect of Heat Input on Thermal Storage for Horizontal Thermal Storage Tank with Heat pipe (열 파이프용 수평 축열조에서의 열 입력이 축열에 미치는 영향)

  • Pak, Ee-Tong;Jeong, Un-Chul
    • Solar Energy
    • /
    • v.16 no.2
    • /
    • pp.39-47
    • /
    • 1996
  • The horizontal thermal storage tank with heat pipe which is suitable for the sensible heat storage system is able to store a hot water from the heat source such as heating pad efficiently and to supply a hot water to load rapidly. And arrangement of heating pad play an important role in thermal flow and thermal storage efficiency. In this experiments, number of heating pad is ranged from three, five and nine, and when there is no change on number of heating pad, arrangements are two types of concentration-type and dispersion-type. Strong entrainment take place in the case of concentration-type of heating pad, and rapid temperature rise(${\Delta}{\doteqdot}1.6{\sim}3.2^{\circ}C$) in the tank is obtainable on the concentration-type than dispersion-type. In the constant number of heating pad, the concentration-type has the higher efficiency with about $5{\sim}6%$ than the dispersion-type Therefore, concentration-type of heating pad is an efficient design in constant number of heating pad.

  • PDF

Experimental Study for the Reinforcement of District Heating Pipe (지역난방 열배관 강화를 위한 실증시험 연구)

  • Kim, Jaemin;Kim, Jooyong;Cho, Chongdu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.3
    • /
    • pp.245-252
    • /
    • 2016
  • In this study, an alternative bend design is proposed to overcome the aging problem in piping bends. In this design, the foam pad is not included. Finite element analysis was performed based on the total pipe diameter. From this analysis, the shape of the Shear Control Ring (SCR) was determined. Temperature, stress, and other data of the proposed reinforced pipe were acquired and analyzed after the test was performed. The value of the thermal stress for the reinforced steel pipe satisfied the required standard without the foam pad based on the manufacturing of the reinforced fitting and construction site of the test. The reinforcement provided a shear strength level for the foam pad that resulted in maximum shear stress less than stress based on the original foam pad applied at the pipe bend. Additionally, an increasing factor of safety effect for the reinforced fitting application was discovered.

An analysis of the thermal characteristics for optimal design and operation of the radiant heating panels (복사난방패널의 설계 및 운전을 위한 열적 특성 분석)

  • Lee, T.W.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.9 no.2
    • /
    • pp.180-188
    • /
    • 1997
  • The theoretical analysis and experiment with simulator were performed to obtain the temperature distributions in radiant heating panel and heat supply from hot water to heating space for the purpose of the development of comfortable living space from a point of view of the improvement of air quality and the enhancement of system efficiency. The relations of various parameters, such as pipe pitch, room temperature as well as flow rate and temperature of hot water and so on, with the rate of heat supplied, mean temperature and maximum temperature difference at panel surface were discussed. The effects of these parameters were also verified on the thermal performance of heating panel using the relations which could be used for the optimal design and operation of the radiant heating panel.

  • PDF