• Title/Summary/Keyword: Heating Energy

Search Result 3,246, Processing Time 0.036 seconds

Synthesis and Curing Behaviors of Polyisoimide Oligomers with Ethynyl End Groups (Ethynyl 말단기를 갖는 Polyisoimide 올리고머의 합성 및 이들의 경화거동에 관한 연구)

  • Choi, Seok Woo;Kim, Bo Ock;Kim, Ji-Heung;Nam, Sung Woo;Jeon, Boong Soo;Kim, Young Jun
    • Polymer(Korea)
    • /
    • v.38 no.6
    • /
    • pp.774-781
    • /
    • 2014
  • Acetylenic or phenylethynyl end-capped polyisoimide oligomers ($M_w$ 2500 g/mol, 5000 g/mol) based upon 4,4'-diamino diphenyl ether (4,4'-ODA)/4,4'-oxydiphthalic anhydride (ODPA) and 4,4'-ODA/3,3',4,4'-benzophenone tetracarboxylic acid dianhydride (BTDA) were synthesized by using 4-ethynylaniline (4-EA) or 4-phenylethynyl phthalic anhydride (4-PEPA) as an end capper. The incorporation of ethynyl groups were confirmed by FTIR spectroscopy. The isomerization temperature was influenced by molecular weight as well as the backbone structure of polyisoimides oligomers. Thus, polyisoimide oligomers with molecular weight of 2500 g/mol was found to be imidized at temperature $10^{\circ}C$ lower than that for the oligomers with molecular weight of 5000 g/mol. The crosslinking reaction of ethynyl groups occurred at a higher temperature than that for the isoimide/imide isomerization reaction. These two reactions were totally or partially overlapped on the DSC thermograms for the polyisoimide oligomer end-capped with 4-EA. Kinetics of thermal imidization and crosslinking reactions for the 4,4'-ODA/ODPA polyisoimide oligomers end-capped with 4-PEPA were investigated by performing dynamic DSC experiments at heating rate of $10^{\circ}C/min$. The activation energy and pre-exponential factors were 141 kJ/mol and $1.45{\times}10^{13}min^{-1}$ for the imidization reaction and 177 kJ/mol and $2.90{\times}10^{13}min^{-1}$ for the crosslinking reaction, respectively.

Studies on the Production of $\beta$-Galactosidase by Lactobacillus sporogenes - Properties and Application of $\beta$-Glactosidase- (Lactobacillus sporogenes에 의한 $\beta$-Galactosidase 생산에 관한 연구 -$\beta$-Galactosidase의 효소학적 성질 및 응용-)

  • 김영만;이정치;최용진;양한철
    • Microbiology and Biotechnology Letters
    • /
    • v.13 no.4
    • /
    • pp.355-359
    • /
    • 1985
  • The purified $\beta$-galactosidase from L. sporogenes was most active at pH 7.0 and 6$0^{\circ}C$ with O-nitrophenyl-$\beta$-D-galactopyranoside (ONPG) in 0.05 M phosphate buffer. It was stable over a pH range from 5.0 to 9.0 and lost less than 10% of its activity after heating for 30 minutes at 6$0^{\circ}C$ and pH 7.0. All the mineral ions examined in this work showed no significant activating effect, whereas L-cysteine exerted a great stimnlatory effect on the enzyme activity at the concentration of 10 mM. The Km values were 1.2 mM for ONPG and 33.3 mM for lactose. Approximately 85% of lactose in cow's milk, in 10% skim milk and in 5% lactose solution was hydrolyzed after 4 hours incubation at 6$0^{\circ}C$ with 2 units of the purified $\beta$-galactosidase per $m\ell$ of the substrate solutions. The $\beta$-galactosidase from L. sporogenes, therefore, is considered to be suitable for hydrolysis of lactose in milk and other dairy products.

  • PDF

Analysis of Factors Affecting the Hygroscopic Performance of Thermally Treated Pinus koraiensis Wood (잣나무열처리재의 흡방습성능에 미치는 영향인자 분석)

  • Chang, Yoon-Seong;Han, Yeon-Jung;Eom, Chang-Deuk;Park, Joo-Saeng;Park, Moon-Jae;Choi, In-Gyu;Yeo, Hwan-Myeong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.40 no.1
    • /
    • pp.10-18
    • /
    • 2012
  • A high airtightness is required for the residential spaces constructed recently to save cooling and heating energy through improving insulation performance. Because the chances to release steam formed by human activity in building and inflow of water vapor in outdoor air to residential space are reduced, the natural humidity control performance of interior materials has become more important. In this study, hygroscopic performance of thermo-physically treated wood (Pinus koraiensis) was estimated. At various relative humidity condition, the water vapor adsorption and desorption rates of wooden materials were measured as well as equilibrium moisture content. Effects of roughness and surface microstructure as physical factors and functional groups as chemical factors on the hygroscopicity were analyzed. It is expected that the results from this study and further study of measuring moisture generation in residential spaces could contribute to install a system for evaluating the hygrothermal performance of wooden building.

Variation of Water Content and Thermal Behavior of Talc Upon Grinding: Effect of Repeated Slip on Fault Weakening (활석 분쇄에 따른 함수율 및 열적거동 변화: 단층의 반복되는 미끌림이 단층 약화에 미치는 영향)

  • Kim, Min Sik;Kim, Jin Woo;Kang, Chang Du;So, Byung Dal;Kim, Hyun Na
    • Journal of the Mineralogical Society of Korea
    • /
    • v.32 no.3
    • /
    • pp.201-211
    • /
    • 2019
  • The particle size and crystallinity of fault gouge generally decreases with slip. Phyllosilicates including talc are known to be present in fault gouge and play an important role in fault weakening. In particular, the coefficient of friction varies depending on the presence of a water molecule on the surface of mineral. The purpose of this study is to investigate the effect of talc on fault weakening by changing the water content and dehydration behavior of talc before and after grinding, which systematically varied particle size and crystallinity using high energy ball mill. Infrared spectroscopy and thermal analysis show that the as-received talc is hydrophobic before grinding and the water molecule is rarely present. After grinding up to 720 minutes, the particle size decreased to around 100 ~300 nm, and in talc, where amorphization proceeded, the water content increased by about 8 wt.% and water molecule would be attached on the surface of talc. As a result, the amount of vaporized water by heating increased after grinding. The dihydroxylation temperature also decreased by ${\sim}750^{\circ}C$ after 720 minutes of grinding at ${\sim}950^{\circ}C$ before grinding due to the decrease of particle size and crystallinity. These results indicate that the hydrophobicity of talc is changed to hydrophilic by grinding, and water molecules attached on the surface, which is thought to lower the coefficient of friction of phyllosilicates. The repeated slip throughout the seismic cycle would consistently lower the coefficient of friction of talc present in fault gouge, which could provide the clue to the weakening of matured fault.

An Experimental Study on the Reduction Effects of Shading Devices on Sky Radiant Cooling in Winter (차양장치의 겨울철 천공복사 냉각 저감 효과에 관한 실험적 연구)

  • Kim, Jin-Hee;Kim, Young-Tag;Lee, Soo-Yeol;Choi, Won-Ki
    • Land and Housing Review
    • /
    • v.12 no.1
    • /
    • pp.129-137
    • /
    • 2021
  • External shading devices are well known solar control devices that can help reduce the cooling load of commercial buildings. For this study, experiments were conducted to examine the feasibility of shading devices in reducing both the cooling and heating loads. The influence of sky radiant cooling during winter was verified for the external shading device, internal roller blind, and window. Results can be summarized as follows. The temperature difference between the inner and outer surfaces of the window with the external shading device was 11.8℃ compared to 14.6℃ for one without the external shading device. This 2.8℃ difference was due to heat exchange by sky radiation when the surface temperature of the shading device was lower than the ambient outdoor air temperature. The roller blind resulted in a lower temperature of 0.8℃ compared to the average temperature of the window's air cavity. This was due to heat exchange by sky radiation of the roller blind surfaces. Without shading devices, the outside surface temperature of the window is about 3℃ higher. The study also found that when external shading devices were installed on both the southwest and southeast sides, the outside surface temperature of the windows were lower on the southwest side than the southeast side.

Evaluation of thermal stress of poultry according to stocking densities using mumerical BES model (BES 수치모델을 이용한 사육 밀도별 가금류 고온 스트레스 평가)

  • Kwon, Kyeong-seok;Ha, Tahwan;Choi, Hee-chul;Kim, Jong-bok;Lee, Jun-yeob;Jeon, Jung-hwan;Yang, Ka-young;Kim, Rack-woo;Yeo, Uk-hyeon;Lee, Sang-yeon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.1
    • /
    • pp.456-463
    • /
    • 2019
  • Micro climatic conditions within the livestock facility are affected by various factors such as ventilation, cooling, heating, insulation and latent and sensible heat generation from animals. In this study, numerical BES method was used to simulate energy flow inside the poultry house. Based on the BES method and THI concept, degree of thermal stress of poultry was evaluated according to the locations in South Korea. Comparison of THI values within the poultry house was also carried out according to the stocking densities to reflect recent animal-welfare issue. Significant decrease in thermal stress of poultry was observed when the stocking density of $30kg/m^2$ was applied in the change of the seasons(p<0.05) however, there was no statistically significant difference in summer season(p>0.05). It meant that installation of proper cooling system is urgently needed. For Iksan city of Jeollabuk-do province, total 252 hours of profit for thermal stress was found according to decrease in the stocking density.

Greenhouse Gas Mitigation Effect Analysis by Establishing Additional Heat Storage System for Combined Heat and Power Plant (열병합발전소에서의 축열조 증설에 의한 온실가스 감축 효과 분석)

  • Kim, Shang Mork;Yoon, Joong Hwan;Lim, Kyoung Mi
    • Journal of Climate Change Research
    • /
    • v.2 no.3
    • /
    • pp.175-189
    • /
    • 2011
  • In this research, we describe the methodology and the quantification about GHG reduction effects, expected by optimization of operation mode according to establishing additional heat storage system of Bundang Combined Cycle Power Plant. As an intermediate form of General Combined Cycle Power Plant and Heat supply only district heating plant, Bundang Combined Cycle Power Plant(and Ilsan, Anyang, Bucheon) is possible to satisfy demand for the electrical load and thermal load capacity at the same time through changes to the operation mode itself. Therefore, through the operating transition of high-efficiency mode that the condenser cooling water is recovered and supplied to district heat and cooling, establishing additional heat storage system have flexible supply ability at the power and heat market. In this research, We calculated using the operating performance for the last three years(2008~2010) and efficiency of each mode-specific values. As a result, GHG reduction effects were calculated as $97.95kg_{-}CO_2/Gcal$ per heat energy 1 Gcal supplied at the heat storage system and we expected emmision reduction effect about $13,500Ton_{-}CO_2/yr$.

Forecasting daily peak load by time series model with temperature and special days effect (기온과 특수일 효과를 고려하여 시계열 모형을 활용한 일별 최대 전력 수요 예측 연구)

  • Lee, Jin Young;Kim, Sahm
    • The Korean Journal of Applied Statistics
    • /
    • v.32 no.1
    • /
    • pp.161-171
    • /
    • 2019
  • Varied methods have been researched continuously because the past as the daily maximum electricity demand expectation has been a crucial task in the nation's electrical supply and demand. Forecasting the daily peak electricity demand accurately can prepare the daily operating program about the generating unit, and contribute the reduction of the consumption of the unnecessary energy source through efficient operating facilities. This method also has the advantage that can prepare anticipatively in the reserve margin reduced problem due to the power consumption superabundant by heating and air conditioning that can estimate the daily peak load. This paper researched a model that can forecast the next day's daily peak load when considering the influence of temperature and weekday, weekend, and holidays in the Seasonal ARIMA, TBATS, Seasonal Reg-ARIMA, and NNETAR model. The results of the forecasting performance test on the model of this paper for a Seasonal Reg-ARIMA model and NNETAR model that can consider the day of the week, and temperature showed better forecasting performance than a model that cannot consider these factors. The forecasting performance of the NNETAR model that utilized the artificial neural network was most outstanding.

Determination of Thermal Radiation Emissivity and Absorptivity of Thermal Screens for Greenhouse (온실 스크린의 장파복사 방사율 및 흡수율 결정)

  • Rafiq, Adeel;Na, Wook Ho;Rasheed, Adnan;Kim, Hyeon Tae;Lee, Hyun Woo
    • Journal of Bio-Environment Control
    • /
    • v.28 no.4
    • /
    • pp.311-321
    • /
    • 2019
  • Greenhouse farmers often use thermal screens to reduce greenhouse heating expenses during the winter, and for shade during hot, sunny days in the summer, as it is an inexpensive solution to temperature control relative to other available options. However, accurate measurements of their emitted and absorbed radiations are important for the selection of suitable screens that offer maximum performance. Material's ability to save energy is highly dependent on these properties. Limited studies have investigated the measurement of these properties under natural conditions, but they are only applicable to materials having partial porosities. In this work, we describe a new radiation balance method for determining emissive power and absorptive capacity, as well as reflectivity, transmissivity and emissivity of materials having complete and partial transparency by using pyrgeometer and net radiometer. In this study, four materials with zero porosity, were tested. The emissivity value of PE, LD-13, LD-15 and PH-20 was $0.439{\pm}0.020$, $0.460{\pm}0.010$, $0.454{\pm}0.004$, and $0.499{\pm}0.006$, respectively. All tested samples showed high emitted radiation as compared to absorbed radiation.

Development of Structural Model and Analysis of Design Factors for Small Greenhouse of Urban Agriculture (도시농업을 위한 소형온실 설계요인 분석 및 구조모델 개발)

  • Kim, Hyung-Kweon;Ryou, Young-Sun;Kim, Young-Hwa;Lee, Tae-Seok;Oh, Sung-Sik;Lee, Won-Suk;Kim, Yong-Hyeon
    • Journal of Bio-Environment Control
    • /
    • v.28 no.4
    • /
    • pp.388-395
    • /
    • 2019
  • The purpose of this study is to suggest structural model and analyze design factors for the development of small greenhouse standardization model. The average dimensions of small greenhouse desired by urban farmers were 3.3m in width, 1.9m in eaves height, 2.7m in ridge height, 5.7m in length. The cladding materials for small greenhouse were preferred to glass, PC board and plastic film, framework to aluminum alloy and steel, and heating method in electrical energy. In addition, it was analyzed that small greenhouses need to develop structural model by dividing them into entry-level type and high-level type. The roof type that was used for entry-level type was arch shape, framework was steel pipe, cladding material was plastic film. On the other hand, high-level type was used in even span or dutch light type, framework with square hollow steel, cladding materials with glass or PC board. In consideration of these findings and practicality, this study developed four types of small greenhouses. The width, eaves height, ridges height, and length of the small greenhouses of even span type, which were covered with 5mm thick glass and 6mm thick PC board were 3m, 2.2m, 2.9m, and 6m, respectively. The small greenhouse of dutch light type covered with 5mm thick glass was designed with 3.8m in with, 2.2m in eaves height, 2.9m in ridges height, and 6m in length. The width, eaves height, ridges height, and length of the arch shape small greenhouse covered with a 0.15mm PO film were 3m, 1.5m, 2.8m, and 6m, respectively.