• 제목/요약/키워드: Heat-up time

검색결과 574건 처리시간 0.027초

LCD 패널 세척공정에서 원적외선 히터에 의한 유리기판 승온시간 예측 (Prediction of Heat-Up Time of the Glass Plate by IR Heaters in an LCD-Panel Cleaning Process)

  • 김윤호;지태호;김서영;리광훈
    • 설비공학논문집
    • /
    • 제18권6호
    • /
    • pp.526-533
    • /
    • 2006
  • The prediction of heat-up time of an LCD glass plate in LCD glass pre-treatment process has been implemented in the present study. Firstly, the analytical solution for one-dimensional radiation heat transfer from IR heaters to a LCD glass plate is obtained. When the surface temperature of the IR heaters is set at 473 K, the heat-up time of LCD glass to averaged temperature of 383K is 28 seconds. In addition, a three dimensional full CFD analysis using STAR-CD is implemented in an effort to consider the effect of 3-D heat loss through the furnace walls. From the results of the 3-D CFB analysis, the heat-up time increases up to 32.5 seconds under the same conditions. When the IR heater temperature in creases up to 573 K, the heat-up time decreases to 12 seconds for the one-dimensional analytical solution and to 13.5 seconds for the 3-D CFD analysis, respectively.

구리나노입자가 코팅된 열교환기의 안전성 향상을 위한 임계 열유속 측정실험 (Critical heat flux measurement experiment to improve safety of copper nano-particle coated heat exchanger)

  • 모용현;김남진;전용한;이덕수
    • 대한안전경영과학회지
    • /
    • 제19권4호
    • /
    • pp.317-322
    • /
    • 2017
  • When the heat flux on the heating surface following changing heat condition in the boiling heat transfer system exceeds critical heat flux, the critical heat flux phenomenon is going over to immediately the film boiling area and then it is occurred the physical destruction phenomenon of various heat transfer systems. In order to maximize the safe operation and performance of the heat transfer system, it is essential to improve the CHF(Critical Heat Flux) of the system. Therefore, we have analysis the effect of improving CHF and characteristics of heat transfer following the nanoparticle coating thickness. As the results, copper nanocoating time are increased to CHF, and in case of nano-coatings are increased spray-deposited coating times more than in the fure water; copper nanopowder is increased up to 6.40%. The boiling heat transfer coefficients of the pure water are increased up to 5.79% respectively. Also, the contact angle is decreased and surface roughness is increased when nano-coating time is increasingly going up.

자동차용 배기열 회수 장치의 성능 특성에 관한 연구 (Study on the Performance Characteristics of Exhaust Heat Recovery Device in Automobile)

  • 홍영준;최두석;김종일
    • 한국자동차공학회논문집
    • /
    • 제20권2호
    • /
    • pp.78-84
    • /
    • 2012
  • The purpose of this study is to investigate the performance characteristics of new exhaust heat recovery device for the engine's fast warm-up. In this study, two different interior area designed for prototyping and on the exhaust heat recovery device to evaluate the performance compare the performance characteristics were chosen a better product. A company's product and selected prototype-2 were evaluated and compared the performance. This experiment was conducted under the same conditions. The time from starting to warm-up of engine was measured. As a result, the performance characteristics of the prototype-2 was not higher than that of the A company's product. However, in comparison with base system, prototype-2 of the exhaust heat recovery device discover that the warm-up time was shortened.

궤도고무부품의 열해석에 관한 연구 (A study of Heat Analysis on Track Rubber Parts)

  • 김영수
    • 한국정밀공학회지
    • /
    • 제16권9호
    • /
    • pp.117-122
    • /
    • 1999
  • Track rubber parts has heat built-up as long as dynamic loading is applied from running tracked vehicles. Durability is required for rubber part to sustain the heat accumulation and heat exchange between rubber-metal assembly and environmental air and ground. For this research, the track assembly was divided into four parts i.e., bottom track shoe, upper track pad, pin busing and metal structure. Three rubber parts and metal structure were modelled and analyzed with MARC package program to obtain time-temperature data which was induced form mechanical work of tracked vehicles. heat accumulation data was obtained from special experiments under the room temperature of 25$^{\circ}C\;and\;35^{\circ}C$ to simulate the actual environmental conditions. From this research, it is cleared that the environmental temperature does not affect to the heat accumulation speed in rubber parts. Also, the heat built-up mechanism was clarified from the thermo-mechanical work based on numerical analysis and experiments.

  • PDF

배기열 회수장치 적용에 따른 SI 엔진의 웜업 성능에 미치는 영향 (Effects of Warm-up Performance on SI Engine with Exhaust Heat Recovery System)

  • 박경석;서호철;박선홍;김인태;장성욱
    • 한국자동차공학회논문집
    • /
    • 제19권6호
    • /
    • pp.53-60
    • /
    • 2011
  • The effect of exhaust heat recovery system can be evaluated by two well known method. First method is to measure the time duration from engine start under cold coolant temperature till coolant get warmed. By this methodology coolant warming duration can be index of warm-up effect. Second method is to analyze heat balance of the engine during warm-up phase under steady engine operation so that wasted energy by losses such as cooling and exhaust can be index of warm-up effect. This study focused on evaluation of warming-up effect by both methodology above mentioned using 2L SI engine under from idle to 2000rpm steady condition. Results, idle operation showed low heat recovery efficiency but under higher engine speed condition, remarkable heat recovery efficiency improvement was observed. In 2000rpm steady condition, warm-up duration of engine is decreased by exhaust heat recovery system.

Effect of Heat Pretreatment on the Functional Constituents of Rice Germ

  • Kwon, Yun-Ju;Lee, Ki-Teak;Yun, Tae-Moon;Choi, Sang-Won
    • Preventive Nutrition and Food Science
    • /
    • 제9권4호
    • /
    • pp.330-335
    • /
    • 2004
  • Changes in functional constituents of rice germ prepared using three different heat pretreatments: roasting, steaming and microwave heating, were determined and compared with those of non-treated rice germ. The yield of rice germ oil increased generally and then decreased with increasing time for all three heat pretreatments, although the yields of rice germ oil varied among the three heat pretreatments. There were no major differences in fatty acid compositions among the rice germ oils subjected to the three different heat pretreatments. Levels of $\alpha$-tocopherol in rice germ oil increased up to about 1.5 times at 3 min of roasting and microwave heating, compared to control, and then decreased with increasing treatment time, but $\alpha$­tocopherol concentrations in rice germ oil gradually decreased with increasing steaming time. The contents of three phytosterols ($\beta$-sitosterol, stigmasterol and ergosterol) decreased progressively with increases in roasting and steaming time, while concentrations of the three phytosterols increased up to - 15$\%$ with 3 min of microwave process as compared to control, and then decreased thereafter. Levels of $\gamma$-oryzanol in rice germ oil decreased gradually with increasing time during all three different heat pretreatments. However, levels of $\gamma$ -aminobutyric acid (GABA) in rice germ decreased gradually with increasing roasting time, while those of GABA increased greatly up to about 2 times after 10 min of steaming process, and then decreased slowly thereafter. During microwave heating, the contents of GABA increased at 3 min of treatment time and then decreased. These results suggest that microwave heating may be the most suitable processing method to preserve functional constituents in rice germ.

BLOW UP OF SOLUTIONS WITH POSITIVE INITIAL ENERGY FOR THE NONLOCAL SEMILINEAR HEAT EQUATION

  • Fang, Zhong Bo;Sun, Lu
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제16권4호
    • /
    • pp.235-242
    • /
    • 2012
  • In this paper, we investigate a nonlocal semilinear heat equation with homogeneous Dirichlet boundary condition in a bounded domain, and prove that there exist solutions with positive initial energy that blow up in finite time.

수화발열량이 다른 콘크리트조합 모의부재 매스콘크리트의 온도이력 특성 (Temperature History of Mock-up Mass Concrete Considering Different Heat Generation Due to Mixture Adjustment)

  • 김종;전충근;신동안;윤기원;오선교;한천구
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2005년도 춘계 학술기술논문발표대회 논문집
    • /
    • pp.9-12
    • /
    • 2005
  • This paper investigated the temperature history of mass concrete mock up structure considering different heat generation by varying with mixture proportion. Setting time difference between high early strength mixture (E-P) and retarding mixture (R-F30) was 14.5hours. Incorporation of $30\%$ of fly ash contributed to $10^{\circ}C$ of hydration heat reduction. In generally used C and D combination, bottom concrete shows earlier hydration, while E-J combination showed reverse tendency and thus, this method can reduce the crack occurrence. Therefore, heat generation difference method has beneficial effect on reducing crack induced by hydration heat resulting from heat generation difference between surface and center section.

  • PDF

초지연제의 응결시간차에 따라 분할타설된 매스 콘크리트의 수화열 저감 (Reduction of Hydration Heat in Division-Placed Mass Concrete Considering the Difference of Setting Time in Super Retarding Agents)

  • 지석;배정렬;황인성;윤치환;김기철;한천구
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2002년도 가을 학술발표회 논문집
    • /
    • pp.805-808
    • /
    • 2002
  • This study is designed to reduction of hydration heat of 4 layer division-placed mass concrete considering the difference of setting time of super retarding agent. According to the results, peak temperature of plain concrete by hydration heat show $63^{\circ}C$ around the age of 1 days. Hydration heat is lowest in the bottom layer, and highest in the middle of 3rd layer from the bottom. Hydration heat of mock up structure, which is division-placed at the same interval of 1 and 2 days by setting time difference of super retarding agent, is highest in the bottom layer because after peak temperature of 4th layer, hydration reaction progresses in order of 3rd, 2nd and 1st layer. But in mock up structure which is division-placed at the various interval. peak temperature by hydration heat is reduced by about $13^{\circ}C$, compared with plain concrete because after first peak hydration heat of 4th layer (plain concrete), hydration reaction progresses after the drop of hydration heat in order of 3rd, 2nd and 1st layer.

  • PDF