• Title/Summary/Keyword: Heat-resistance steel

Search Result 488, Processing Time 0.029 seconds

A review of chloride induced stress corrosion cracking characterization in austenitic stainless steels using acoustic emission technique

  • Suresh Nuthalapati;K.E. Kee;Srinivasa Rao Pedapati;Khairulazhar Jumbri
    • Nuclear Engineering and Technology
    • /
    • v.56 no.2
    • /
    • pp.688-706
    • /
    • 2024
  • Austenitic stainless steels (ASS) are extensively employed in various sectors such as nuclear, power, petrochemical, oil and gas because of their excellent structural strength and resistance to corrosion. SS304 and SS316 are the predominant choices for piping, pressure vessels, heat exchangers, nuclear reactor core components and support structures, but they are susceptible to stress corrosion cracking (SCC) in chloride-rich environments. Over the course of several decades, extensive research efforts have been directed towards evaluating SCC using diverse methodologies and models, albeit some uncertainties persist regarding the precise progression of cracks. This review paper focuses on the application of Acoustic Emission Technique (AET) for assessing SCC damage mechanism by monitoring the dynamic acoustic emissions or inelastic stress waves generated during the initiation and propagation of cracks. AET serves as a valuable non-destructive technique (NDT) for in-service evaluation of the structural integrity within operational conditions and early detection of critical flaws. By leveraging the time domain and time-frequency domain techniques, various Acoustic Emission (AE) parameters can be characterized and correlated with the multi-stage crack damage phenomena. Further theories of the SCC mechanisms are elucidated, with a focus on both the dissolution-based and cleavage-based damage models. Through the comprehensive insights provided here, this review stands to contribute to an enhanced understanding of SCC damage in stainless steels and the potential AET application in nuclear industry.

Study on The Heat Transfer and Mechanical Modeling of Fiber-Mixed High Strength Concrete (섬유혼입 고강도 콘크리트의 열전달 및 역학적 거동 해석모델에 대한 연구)

  • Shin, Young-Sub;Han, Tong-Seok;Youm, Kwang-Soo;Jeon, Hyun-Kyu
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.11 no.2
    • /
    • pp.45-52
    • /
    • 2011
  • To improve fire-resistance of a high strength concrete against spalling under elevated temperature, fibers can be mixed to provide flow paths of evaporated water to the surface of concrete when heated. In this study, the experiment of a column under fire and mechanical loads is conducted and the material model for predicting temperature of reinforcement steel bar and mechanical behavior of fiber-mixed high strength concrete is suggested. The material model in previous studies is modified by incorporating physical behavior of internal concrete and thermal characteristics of concrete at the elevated temperature. Thermo-mechanical analysis of the fiber-mixed high strength concrete column is conducted using the calibrated material model. The performance of the proposed material model is confirmed by comparing thermo-mechanical analysis results with the experiment of a column under fire and mechanical loads.

Effect of Carbon Potential on the Carbide Formation and Pitting Fatigue Strength of Supercarburized Steel (고농도 침탄강의 탄화물 형성과 피팅 피로강도에 미치는 탄소 포텐셜의 영향)

  • So, Sangjin;Shin, Jungho;Lim, Jae-Won;Lee, Seok-Jae
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.29 no.3
    • /
    • pp.113-123
    • /
    • 2016
  • In the present work, we investigated the effects of the carbon potential on the formation of carbide at the carburized surface and anti-pitting fatigue strength in the supercarburized steels. Two low carbon steels with different Cr concentrations were adopted and the repeated supercarburizing treatment carried out with the different carbon potential conditions. The microstructure and carbides at the supercarburized surface were observed by using optical microscope and scanning electron microscope. The microhardness test was performed and the hardness distribution and the effective case depth at the supercarburized surface were discussed. The roller pitting fatigue test was carried out and the fatigue strength was evaluated with different the carbon potential conditions. The microstructure of the fatigue specimen surface was observed by means of scanning electron microscope and scanning transmission electron microscope. Depending on the chemical composition of the steels and the carbon potential condition, the resistance of temper softening and pitting failure was influenced due to the carbide distribution and the formation of coarse network carbide. Thus, it was confirmed that the control of the carbide formation is a key factor to improve the anti-pitting fatigue strength in the supercarburized steels.

Investigation of the TiCrN Coating Deposited by Inductively Coupled Plasma Assisted DC Magnetron Sputtering. (Inductively Coupled Plasma Assisted D.C. Magnetron Sputtering법으로 제작된 TiCrN 코팅층의 특성 분석)

  • Cha, B.C.;Kim, J.H.;Lee, B.S.;Kim, S.K.;Kim, D.W.;Kim, D.;You, Y.Z.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.22 no.5
    • /
    • pp.267-274
    • /
    • 2009
  • Titanium Chromium Nitrided (TiCrN) coatings were deposited on stainless steel 316 L and Si (100) wafer by inductively coupled plasma assisted D.C. magnetron sputtering at the various sputtering power on Cr target and $N_2/Ar$ gas ratio. Increasing the sputtering power of Cr target, XRD patterns were changed from TiCrN to nitride $Cr_2Ti$. The maximum hardness was $Hk_{3g}$ 3900 at $0.3\;N_2/Ar$ gas ratio. The thickness of the TiCrN films increased as the Cr target power increased, and it showed over $Hk_{5g}3100$ hardness at 100 W, 150 W. TiCrN films were deposited by the ICP assisted DC magnetron sputtering shown good wear resistance as the $N_2/Ar$ gas ratio was 0.1, 0.3.

Properties of Intumescence Alkali Silicates for Building Fire-Resistant (건축용 내화 재료로서의 포비성 알칼리 규산염의 특성에 관한 연구)

  • Kang, Hyun Ju;Kang, Seung Min;Song, Myong Shin;Kim, Young Sik;Park, Jong Hun
    • Applied Chemistry for Engineering
    • /
    • v.20 no.4
    • /
    • pp.416-422
    • /
    • 2009
  • The buildings constructed with steel structure are coated with certified fire resistive material to resist from fire. All the building materials lose their initial performances as time passes by, so they need some maintenance. The Sprayed Fire Resistive Material (SFRM) also loses its performance and this performance loss of the SFRM is very important because fire resistance of buildings depends on SFRM. So this study was aimed to synthesis of alkali-silicates for SFRM and to evaluate the effect of alkali-silicates, K-silicates, Na-silicates and Li-silicates, by exchange of mole ratios as basic factors, tested solubility, intumescence ratios, thermal analysis, powder X-ray diffraction, fire-resistant and heat-resistant.

Modeling of Cooling Channels of Injection Mould using Functionally Graded Material (기능성 경사 복합재를 이용한 사출금형의 냉각회로 모델링)

  • Shin, Ki-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.12
    • /
    • pp.1647-1653
    • /
    • 2011
  • The cycle time in injection moulding greatly depends on the cooling time of the plastic part that is controlled by cooling channels. Cooling channels are required to facilitate the heat transfer rate from the die to the coolant without reducing the strength of the die. Employing layered manufacturing techniques (LMT), a die embedding conformal cooling channels can be fabricated directly while conventional cooling channels are usually made of straight drilled hole. Meanwhile, H13 tool steel is widely used as the die material because of its high thermal resistance and dimensional stability. However, H13 with a low thermal conductivity is not efficient for certain part geometries. In this context, the use of functionally graded materials (FGMs) between H13 and copper may circumvent a tradeoff between the strength and the heat transfer rate. This paper presents a method for modeling of conformal cooling channels made of FGMs.

Selection of Artificial Sand Suitable for Manufacturing Steel Castings through Evaluation of Various Foundry Sand Properties (각종 주물사의 특성과 주강품 주조에 적합한 인공사 선택)

  • Gwang-Sik Kim;Jae-Hyung Kim;Myeong-Jun Kim;Ji-Tae Kim;Ki-Myoung Kwon;Sung-Gyu Kim
    • Journal of Korea Foundry Society
    • /
    • v.43 no.3
    • /
    • pp.107-136
    • /
    • 2023
  • Natural silica sand was commonly used for sand casting of cast steel products, and chromites sand was used to suppress seizure defects due to the lack of thermal properties of silica sand. However there are disadvantages such as deterioration by repeated use, system sand mixing problem, difficulty separating and removing, increased during mold according to high density and to being waste containing chrome. Recently, industrial waste reduction and atmospheric environment improvement have been highlighted as important tasks in the casting industry. In order to solve the problems that occur when using foundry Sand and to improve the environment of casting factories, various artificial sands that can be applied instead of natural silica sand have been developed and introduced. Artificial sands can be classified into artificial sand manufactured by the electric arc atomization or gas flame atomization, artificial sand manufactured by the spray drying & sintering process, artificial sand manufactured by the sintering & crushing process and exhibit different physical properties depending on the type of raw-minerals and manufacturing method. In this study, comparative evaluation tests were conducted on the physical properties of various foundry sands, mold strength, physical durability, thermal durability, and casting test pieces. When comprehensively considering the actual amount of molding sand used according to density, the mold strength according to the shape of sand, the physical and thermal durability of foundry sand, and the heat resistance characteristics of foundry sand, 'Molten artificial sand A1' or 'Molten artificial sand B' is judged to be the most suitable spherical artificial sand for casting of heavy steel castings.

Characteristics Evaluation on Welding Metal Zones Welded with Inconel 625 Filler Metal to Cast Steel for Piston Crown Material

  • Jeong, Jae-Hyun;Moon, Kyung-Man;Lee, Sung-Yul;Lee, Myeong-Hoon;Baek, Tae-Sil
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.5
    • /
    • pp.542-547
    • /
    • 2015
  • Since the oil price has been significantly jumped for several years, a heavy oil of low quality has been mainly used in the diesel engine of the merchant ship. Thus, a combustion chamber of the engine has been often exposed to severely corrosive environment more and more because temperature of the exhaust gas of the combustion chamber has been getting higher and higher with increasing of using the heavy oil of low quality. As a result, wear and corrosion of the engine parts such as exhaust valve, piston crown and cylinder head surrounded with combustion chamber are more serious compared to the other parts of the engine. Therefore, an optimum repair welding for these engine parts is very important to prolong their lifetime in a economical point of view. In this study, Inconel 625 filler metal were welded with GTAW method in the cast steel which would be generally used with piston crown material. And the corrosion properties of weld metal, heat affected and base metal zones were investigated using electrochemical methods such as measurement of corrosion potential, anodic polarization curves, cyclic voltammogram and impedance etc. in 35% $H_2SO_4$ solution. The weld metal and base metal zones exhibited the highest and lowest values of hardness respectively. Furthermore, the corrosion current density of the weld metal zone revealed the lowest value, having the highest value of hardness. The corrosive products with red color and local corrosion like as a pitting corrosion were considerably observed at the base metal zone, while these morphologies were not wholly observed in the weld metal zone. In particular, the polarization characteristics such as impedance, polarization curve and cyclic voltammogran associated with corrosion resistance property were well in good agreement with each other. Consequently, it is suggested that the mechanical and corrosion characteristics of the piston crown can be predominantly improved by repair welding method using the Inconel 625 electrode.

Evaluation of Fiber Arrangement Condition of CF/PP Composites Using Electrical Resistance Measurement and Wettability (전기저항 평가법 및 접촉각을 이용한 CF/PP 복합재료 사출성형품 섬유 배열성 평가)

  • Kwon, Dong-Jun;Shin, Pyeong-Su;Kim, Jong-Hyun;Park, Joung-Man
    • Journal of Adhesion and Interface
    • /
    • v.17 no.1
    • /
    • pp.15-20
    • /
    • 2016
  • Fiber arrangement was important for fiber reinforced thermoplastic composites using injection fabrication. In this work, fiber arrangement in CF/PP was investigated to use electrical resistance (ER) method during injection times. There were 3 types of injection products of CF/PP with different ER change ratio by fiber arrangement. High ER change ratio case of injection CF/PP products had better increased tensile strength. This reason was due to the fiber arrangement of CF/PP by injection. Fractured surface and contact angle of CF/PP products were used to evaluate for injection product quality. Uniform fiber arrangement of CF/PP by injection type exhibited the uniform heat condition of melted CF/PP. Steady thermal transfer effect occurred from melted CF/PP to steel injection mold. Steady thermal transfer effect of CF/PP was transmitted to high ER change ratio of mold. Ultimately, good condition CF/PP product by injection molding method could be predicted by using ER method.

Behavior Analysis of Concrete Structure under Blast Loading : (II) Blast Loading Response of Ultra High Strength Concrete and Reactive Powder Concrete Slabs (폭발하중을 받는 콘크리트 구조물의 실험적 거동분석 : (II) 초고강도 콘크리트 및 RPC 슬래브의 실험결과)

  • Yi, Na Hyun;Kim, Sung Bae;Kim, Jang-Ho Jay;Cho, Yun Gu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.5A
    • /
    • pp.565-575
    • /
    • 2009
  • In recent years, there have been numerous explosion-related accidents due to military and terrorist activities. Such incidents caused not only damages to structures but also human casualties, especially in urban areas. To protect structures and save human lives against explosion accidents, better understanding of the explosion effect on structures is needed. In an explosion, the blast load is applied to concrete structures as an impulsive load of extremely short duration with very high pressure and heat. Generally, concrete is known to have a relatively high blast resistance compared to other construction materials. However, normal strength concrete structures require higher strength to improve their resistance against impact and blast loads. Therefore, a new material with high-energy absorption capacity and high resistance to damage is needed for blast resistance design. Recently, Ultra High Strength Concrete(UHSC) and Reactive Powder Concrete(RPC) have been actively developed to significantly improve concrete strength. UHSC and RPC, can improve concrete strength, reduce member size and weight, and improve workability. High strength concrete are used to improve earthquake resistance and increase height and bridge span. Also, UHSC and RPC, can be implemented for blast resistance design of infrastructure susceptible to terror or impact such as 9.11 terror attack. Therefore, in this study, the blast tests are performed to investigate the behavior of UHSC and RPC slabs under blast loading. Blast wave characteristics including incident and reflected pressures as well as maximum and residual displacements and strains in steel and concrete surface are measured. Also, blast damages and failure modes were recorded for each specimen. From these tests, UHSC and RPC have shown to better blast explosions resistance compare to normal strength concrete.