DOI QR코드

DOI QR Code

Evaluation of Fiber Arrangement Condition of CF/PP Composites Using Electrical Resistance Measurement and Wettability

전기저항 평가법 및 접촉각을 이용한 CF/PP 복합재료 사출성형품 섬유 배열성 평가

  • Kwon, Dong-Jun (Department of Materials Engineering and Convergence Technology, Gyeongsang National University, Engineering Research Institute) ;
  • Shin, Pyeong-Su (Department of Materials Engineering and Convergence Technology, Gyeongsang National University, Engineering Research Institute) ;
  • Kim, Jong-Hyun (Department of Materials Engineering and Convergence Technology, Gyeongsang National University, Engineering Research Institute) ;
  • Park, Joung-Man (Department of Materials Engineering and Convergence Technology, Gyeongsang National University, Engineering Research Institute)
  • 권동준 (경상대학교 나노.신소재융합공학과) ;
  • 신평수 (경상대학교 나노.신소재융합공학과) ;
  • 김종현 (경상대학교 나노.신소재융합공학과) ;
  • 박종만 (경상대학교 나노.신소재융합공학과)
  • Received : 2016.02.19
  • Accepted : 2016.03.04
  • Published : 2016.03.30

Abstract

Fiber arrangement was important for fiber reinforced thermoplastic composites using injection fabrication. In this work, fiber arrangement in CF/PP was investigated to use electrical resistance (ER) method during injection times. There were 3 types of injection products of CF/PP with different ER change ratio by fiber arrangement. High ER change ratio case of injection CF/PP products had better increased tensile strength. This reason was due to the fiber arrangement of CF/PP by injection. Fractured surface and contact angle of CF/PP products were used to evaluate for injection product quality. Uniform fiber arrangement of CF/PP by injection type exhibited the uniform heat condition of melted CF/PP. Steady thermal transfer effect occurred from melted CF/PP to steel injection mold. Steady thermal transfer effect of CF/PP was transmitted to high ER change ratio of mold. Ultimately, good condition CF/PP product by injection molding method could be predicted by using ER method.

열가소성 섬유강화 복합재료를 위해 사출성형법이 사용되며, 사출품 내부의 섬유 배열이 열가소성 복합재료의 기계적 물성에 영향을 미친다. 본 연구에서는 탄소섬유/폴리프로필렌(CF/PP, carbon fiber/polypropylene) 복합재료를 사출성형할 때, 금형에 구리선을 붙여 사출품의 상태에 따라 확인되는 전기저항 변화도를 감지하여 사출품 내부의 섬유 배열 상태를 분석하였다. 사출될 때 발생되는 전기저항 변화도를 3가지의 종류로 구분할 수 있었다. 사출될 때 발생되는 금형의 전기저항 변화도 크기가 클수록 인장강도가 높은 CF/PP 성형품을 제조할 수 있었다. 이러한 이유는 CF/PP 성형품 내부의 섬유 배열에 의한 영향임을 접촉각 평가 및 시편의 표면 분석, 인장시편의 파단면 관찰 결과로 확인하였다. 균일한 섬유 배열을 가질 경우 사출 용융액 내부의 섬유가 열을 고르게 가지고 있으며, 금형에 일정한 열을 사출기간 동안 전달하게 되어 금형의 전기저항 변화도가 증가됨을 감지할 수 있었다. 궁극적으로 전기저항 평가방법을 이용하여 CF/PP 복합재료 성형품의 상태를 예측할 수 있었다.

Keywords

References

  1. D. J. Kwon, Z. J. Wang, J. J. Kim, K. W. Jang, and J. M. Park, Journal of Adhesion and Interface, 14, 75 (2013). https://doi.org/10.17702/jai.2013.14.2.075
  2. D. J. Kwon, Z. J. Wang, G. Y. Gu, and J. M. Park, Journal of Adhesion and Interface, 13, 58 (2001).
  3. Z. J. Wang, D. J. Kwon, G. Y. Gu, J. K. Park, W. I. Lee, and J. M. Park, Journal of Adhesion and Interface, 12, 88 (2011).
  4. S. R. Kim, Journal of Adhesion and Interface, 15, 169 (2014). https://doi.org/10.17702/jai.2014.15.4.169
  5. J. C. Lee and C. S. Ha, Journal of Adhesion and Interface, 15, 9 (2014). https://doi.org/10.17702/jai.2014.15.1.009
  6. J. C. Lee and C. S. Ha, Journal of Adhesion and Interface, 14, 175 (2013). https://doi.org/10.17702/jai.2013.14.4.175
  7. G. S. Shin, Y. W. Chang, and S. W. Kim, Journal of Adhesion and Interface, 13, 156 (2012). https://doi.org/10.17702/jai.2012.13.4.156
  8. T. H. Yoon, J. I. Yuck, J. G. Paik, and Y. J. Oh, Journal of Adhesion and Interface, 12, 94 (2011).
  9. K. H. Wong, D. S. Mohammed, S. J. Pickering, and R. Brooks, Composites Science and Technology, 72, 835 (2012). https://doi.org/10.1016/j.compscitech.2012.02.013
  10. N. G. Karsli, A. Aytac, M. Akbulut, V. Deniz, and O. Guven, Radiation Physics and Chemistry, 84, 74 (2013). https://doi.org/10.1016/j.radphyschem.2012.06.041
  11. X. Sun, H. Kharbas, J. Peng, and L. S. Turng, Polymer, 56, 102 (2015). https://doi.org/10.1016/j.polymer.2014.09.066
  12. S. P. Ju, C. C. Chen, T. J. Huang, C. H. Liao, H. L. Chen, Y. C. Chuang, Y. C. Wu, and H. T. Chen, Computational Materials Science, 115, 1 (2016). https://doi.org/10.1016/j.commatsci.2015.12.032
  13. Z. O. Pehlivanli, I. Uzun, and I. Demir, Construction and Building Materials, 96, 428 (2015). https://doi.org/10.1016/j.conbuildmat.2015.08.104
  14. Y. Liu, X. Zhang, C. Song, Y. Zhang, Y. Fang, B. Yang, and X. Wang, Materials and Design, 88, 810 (2015). https://doi.org/10.1016/j.matdes.2015.09.100
  15. E. K. Wujcik, S. E. Duirk, G. G. Chase, and C. N. Monty, Sensors and Actuators B: Chemical, 223, 1 (2016). https://doi.org/10.1016/j.snb.2015.09.004
  16. G. Gurierrez, F. Fayolle, G. Regnier, and J. Medina, Polymer Degradation and Stability, 95, 1708 (2010). https://doi.org/10.1016/j.polymdegradstab.2010.05.020
  17. D. Cho, H. Zhou, Y. Cho, D. Audus, and Y. L. Joo, Polymer, 51, 6005 (2010). https://doi.org/10.1016/j.polymer.2010.10.028
  18. W. J. Na, J. H. Byun, M. G. Lee, and W. R. Yu, Composites: Part A, 77, 229 (2015). https://doi.org/10.1016/j.compositesa.2015.07.017
  19. A. Mirmohseni and S. Zavareh, Materials and Design, 31, 2699 (2010). https://doi.org/10.1016/j.matdes.2010.01.035
  20. Z. J. Wang, D. J. Kwon, G. Y. Gu, H. S. Kim, D. S. Kim, C. S. Lee, and J. M. Park, Composites Research, 26, 1 (2013). https://doi.org/10.7234/kscm.2013.26.1.1
  21. J. Y. Choi, D. J. Kwon, Z. J. Wang, P. S. Shin, and J. M. Park, Journal of Adhesion and Interface, 15, 9 (2014). https://doi.org/10.17702/jai.2014.15.1.009
  22. Z. Xu, Measurement, 55, 97 (2014). https://doi.org/10.1016/j.measurement.2014.04.030