• Title/Summary/Keyword: Heat-dissipation

Search Result 519, Processing Time 0.026 seconds

A Performance Evaluation of a Heat Dissipation Design for a Lithium-Ion Energy Storage System Using Infrared Thermal Imaging (적외선 열화상을 활용한 리튬 이온 ESS의 방열설계 성능평가에 관한 연구)

  • Kim, Eun-Ji;Lee, Gyung-Il;Kim, Jae-Yeol
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.5
    • /
    • pp.105-110
    • /
    • 2020
  • The global battery market is rapidly growing due to the development of vehicles(EV) and wireless electronic products. In particular logistics robots, which hielp to produce EVs, have attracted much interest in research in Korea Because logistics sites and factories operate continuously for 24 hours, the technology that can dramatically increase the operation time of the logistics equipment is rapidly developing, and various high-level technologies are required for the batteries used in. for example, logistics robots. These required technologies include those that enable rapid battery charging as well wireless charging to charge batteries while moving. The development of these technologies, however, result in increasing explosions and topical accidents involving rapid charging batteries These accidents due to the thermal shock caused by the heat generated during the charging of the battery cell. In this study, a performance evaluation of a heat dissipation design using infrared thermal imaging was performed on an energy storage systrm(Ess) applied with an internal heat conduction cooling method using a heating plate.

Development of Outdoor 50W-LED Module using Heat-pipe and Stack-fin (히트파이프 및 스택핀을 이용한 50W급 옥외용 LED 모듈개발)

  • Hong, Seok-Gi;Jeong, Hee-Suk;Ryeom, Jeong-duk
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.12
    • /
    • pp.15-21
    • /
    • 2015
  • We proposed 50W-LED modules of using Heat-pipe and Stack-fin and produced LED modules was evaluated heat dissipation characteristics with comparison of the conventional die-casting type. It verified the application of products by applying it to 150W-LED road luminaires through simulation. The LED module was measures aimed design temperature of the Stack-fin and showed 26% upward heat dissipation effect than a conventional die-casting type. The luminous efficacy of 150W-LED road luminaires using this LED module reached over 112lm/W, and the simulation results showed average of horizontal luminance, overall luminance uniformity($U_O$) and lane luminance uniformity($U_I$) that is suitable for five-lane road with the KS standards.

Fabrication of Porous Reticular Metal by Electrodeposition of Fe/Ni Alloy for Heat Dissipation Materials (Fe/Ni 합금전착에 의한 다공성 그물군조 방열재료의 제조 연구)

  • Lee, Hwa-Young;Lee, Kwan-Hyi;Jeung, Won-Young
    • Journal of the Korean Electrochemical Society
    • /
    • v.5 no.3
    • /
    • pp.125-130
    • /
    • 2002
  • An attempt was made for the application of porous reticular metal to a heat dissipation material in semiconductor process. For this aim, the electrodeposition of Fe/Ni alloy on the porous reticular Cu has been performed to minimize the thermal expansion mismatch between Cu skeleton and electronic chip. Preliminary tests for the electrodeposition of Fe/Ni alloy layer were conducted by using standard Hull Cell to examine the effect of current density on the composition of alloy layer. It seemed that mass transfer affected significantly the composition of Fe/Ni layer due to anomalous codeposition in the electrodeposition of Fe/Ni alloy. A paddle type stirring bath, which was employed to control the mass transfer of electrolyte in the work, was found to allow the electrodeposition Fe/Ni with a precise composition. result showed that the thermal expansion of Fe/Ni alloy layer was much lower than that of pure copper. From the tests of heat dissipation by using the apparatus designed in the work the heat dissipation material fabricated in the work showed the excellent heat dissipation capacity, namely, more than two times as compared to that of pure copper plate.

Research Trends of Carbon Composite Film with Electromagnetic Interference Shielding and High Heat Dissipation (탄소 복합재 기반 전자파 차폐 및 고방열 일체형 필름 연구동향)

  • Park, Seong-Hyun;Kim, Myounghun;Kim, Kwang-Seok
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.28 no.4
    • /
    • pp.1-10
    • /
    • 2021
  • Recently, electronic components are becoming smaller and highly integrated. As a result, electromagnetic interference (EMI) and heat generation problems must be solved simultaneously with a small area and thickness. Graphene composites and graphite composites are lightweight materials that can simultaneously solve EMI shielding and heat dissipation problems with excellent electrical and thermal conductivity. With the recent development of synthetic technology and composite manufacturing technology, the research to application of their composites is increasing. In this paper, we reviewed the latest researches on composite films of graphene and graphite for EMI shielding and heat dissipation.

Heat transfer enhancement of nanofluids in a pulsating heat pipe for heat dissipation of LED lighting

  • Kim, Hyoung-Tak;Bang, Kwang-Hyun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.10
    • /
    • pp.1200-1205
    • /
    • 2014
  • The effect of nanofluids on the heat transfer performance of a pulsating heat pipe has been experimentally investigated. Water-based diamond nanofluid and aluminium oxide ($Al_2O_3$) nanofluid were tested in the concentration range of 0.5-5%. The pulsating heat pipe was constructed using clear Pyrex tubes of 1.85 mm in inner diameter in order to visualize the pulsating action. The total number of turns was eight each for heated and cooled parts. The supply temperatures of heating water and cooling water were fixed at $80^{\circ}C$ and $25^{\circ}C$ respectively. The liquid charging ratio of the nanofluid was 50-70%. The test results showed that the case of 5% concentration of diamond nanofluid showed 18% increase in heat transfer rate compared to pure water. The case of 0.5% concentration of $Al_2O_3$ nanofluid showed 24% increase in heat transfer rate compared to pure water. But the increase of $Al_2O_3$ nanofluid concentration up to 3% did not show further enhancement in heat transfer. It is also observed that the deposited nanoparticles on the tube wall played a major role in enhanced evaporation of working fluid and this could be the reason for the enhancement of heat transfer by a nanofluid, not the enhanced thermal conductivity of the nanofluid.

Improvement of Compressor-Cooling Efficiency Based on Ribs (리브를 활용한 압축기 냉각 효율 향상에 관한 연구)

  • Hwang, Il Sun;Lee, Young Lim
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.6
    • /
    • pp.70-75
    • /
    • 2021
  • Recently, several efforts have been made to improve the thermal efficiency of a refrigerant compressor. In this study, we attempted to improve energy efficiency ratio (EER) performance by reducing the superheat of the linear compressor. To this end, heat generated inside the compressor must be effectively dissipated. Therefore, heat dissipation was improved by processing ribs in the gap-flow region generated owing to the vibration of the compressor body. The results showed that the convective heat transfer coefficient becomes significantly high when ribs are used, increasing the heat dissipation rate. This helps improve EER by reducing the superheat of the compressor.

Design of Heat Dissipation System for 400kW IGBT Inverter (400kw급 IGTB 인버터용 방열 시스템 설계)

  • Lee Jin-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2003.07a
    • /
    • pp.10-14
    • /
    • 2003
  • This paper deals with the design of heat dissipation system using the forced air cooling method. It suggests the method of appropriately dividing the whole thermodynamic system into analytical subsystems and also presents the correspondent analytic or experimental equations to subsystems. The experimental results on the designed thermodynamic system for 400kw 1GBT inverter show the validity of the proposed design method in the steady state.

  • PDF

A Study on the Stacked type Film Chip Capacitor (적층형 필름 Chip Capacitor 개발)

  • 송호근;박상식;연강흠;김성호
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1991.10a
    • /
    • pp.73-78
    • /
    • 1991
  • In this study of stacked type film chip capacitor, the important parameters are heat-treated temperature, pressure and time. We measured the temperature dependence of dielectric properties and dissipation factor and the frequency dependence of dielectric properties, dissipation factor, ESR(Equivalent Series Resistance) and impedance in stacked type film capacitor. As a result, the best conditions of heat-treated temperature, pressure and time were proved to be 130$^{\circ}C$, 10kg/$\textrm{cm}^2$ and 3hrs, respectively.

Non-isothermal Effect on the Flow Behavior of Polymer Melts in a Coextrusion Die (고분자의 Coextrusion에서 유동에 대한 비등온 효과)

  • 정인재
    • The Korean Journal of Rheology
    • /
    • v.6 no.2
    • /
    • pp.129-138
    • /
    • 1994
  • 공압출되는 sheet die에서 고분자 물질의 비등온 유동유동을 수치모사하였다. 유변학 적 식으로 power-law model을 사용하였고, 격자생성법을 이용한 유한차분법을 사용하였다. 수치계산을 통해 수축채널에서의 온도 분포를 구해보고 점도가 채널에서의 온도 분포를 구 해 보고 점도가 채널에서의 압력강하 및 신장속도에 미치는 영향을 알아보았다. 압력강하는 외부 유체의 점도 및 heat dissipation의 영향을 크게 받았다. 신장속도는 외부 유체의 점도 가 증가함에 따라 커진 반면 내부 유체의 점도가 증가함에 따라 커진반면, 내부 유체의 점 도증가에 따라 감소하였고, heat dissipation에 의해 증가하였다.

  • PDF

An Experimental Study on the Heat Dissipation Characteristics of the Natural Convection Type Radiator by using the PCMs (PCM물질을 적용한 자연대류형 방열기의 방열특성에 관한 실험적 연구)

  • Sung, Dae-Hoon;Kim, Min-Jun;Kim, Joung-Ha;Yun, Jae-Ho;Kim, Woo-Seung;Peck, Jong-Hyeon
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.1155-1160
    • /
    • 2008
  • In the present study investigated the heat dissipation characteristics of the natural convection type radiator by using the latent heat from a solid-liquid PCM(Phase Change Material). Total radiator volume size is $423{\times}295{\times}83\;mm$ and PCM tank size is $398{\times}270{\times}26\;mm$. The objective was elapsed time lower than maximum operating temperature. Experimental condition, in order to study the effects of the phase-change phenomenon, carried out the various mass flow rate, input electric power, and heat of fusion temperature of two type PCMs. For the above experimental conditions, the cooling performance by using the latent heat showed that heat absorption rate performs for about 3 hours from using PCM $38^{\circ}C$. However, cooling performance by using PCM $50^{\circ}C$ showed higher than surface temperature of heater block because of heat of fusion.

  • PDF