• Title/Summary/Keyword: Heat storage materials

Search Result 230, Processing Time 0.027 seconds

Evaluation of Fracture Toughness of Heat-Affected Zone in $9\%$ Ni Steel for Inner Wall of LNG Storage Tank (LNG 탱크 내조용 $9\%$ Ni 강 열영향부의 파괴인성 평가)

  • Jang J. I.;Yang Y. C.;Kim W. S.;Hong S. H.;Kwon D.
    • 한국가스학회:학술대회논문집
    • /
    • 1997.09a
    • /
    • pp.45-52
    • /
    • 1997
  • The objective of this study is, with concept of fitness-for-purpose, to evaluate the fracture toughness in X-grooved weld HAZ(heat-affected zone) of QLT(quenching, lamellarizing and tempering)-processed $9\%$ Ni steel, qualitatively and quantitatively, and analyze the relation with the change of microstructure. In general, CTOD test is widely used to determine the fracture toughness of steel weldments. But several problem of accuracy has been brought up. Therefore, in this study, modified CTOD test was used for X-grooved weld HAZ for $9\%$ Ni steel. Additionally, microstructure of HAZ is observed and analyzed by OM, SEM and XRD. From the resulty, HAZ toughness of QLT-$9\%$ Ni steel decreased as the evaluated region approaches the fusion line. The decreased toughness was partly caused by reduction of the retained austenite content, resulted from decreased nucleation site of the retained austenite content, resulted from decreased nucleasion site for reverse transformation due to the increasing fraction of coarse grained region. On the other hand, unexpectedly, the increasing fraction of ductile weld did not increase the HAZ toughness. Therefore, in this X-grooved weld HAZ, the primary factor affecting fracture toughness was the fraction of coarse grained region, i.e., the weakest region.

  • PDF

State of the Art and Research Trends on Electrode Materials of Thermal Batteries (열전지 기술 현황과 전극재료 개발 동향)

  • Kang, Seung-Ho;Park, Byung-Jun;Im, Chae-Nam;Cho, Sung-Baek;Cheong, Hae-Won;Yi, Junsin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.12
    • /
    • pp.765-770
    • /
    • 2015
  • Thermal batteries are heat-activated primary reserve power sources that use inorganic salt as electrolytes and specially designed to meet extremely long or environmentally severe storage requirements. They are primarily used to deliver high power for relatively short periods in such applications as fuzes, missiles, ordnance and other military applications. In this paper, we describe a general overview and research trends on electrode materials for thermal batteries.

Development of Retort Packaging Material Using Cellulose Nano Fiber (셀룰로오스 나노 파이버를 적용한 레토르트 포장재 개발)

  • Lee, Jinhee;Choi, Jeongrak;Koo, Kang
    • Textile Coloration and Finishing
    • /
    • v.33 no.1
    • /
    • pp.40-47
    • /
    • 2021
  • As modern society develops, it becomes very complex and diverse, and interests in the convenience of life and the natural environment are gradually increasing. Products used in our daily life are also changing according to the needs of consumers, and food packaging is one of them. In particular, retort packaging materials have been used for the purpose of long-term preservation of contents, but the appearance of products suitable for recent environmental issues has been somewhat delayed. Therefore, in order to develop eco-friendly and human-friendly products by replacing the metals used in the existing retort packaging materials, the possibility of substitution was examined using cellulose nanofibers, a natural material. As a result, it can be seen that all functions can be replaced according to the existing long-term storage characteristics for retort packaging films. In particular, not only oxygen permeability and water vapor permeability, which are one of the most important factors, but also heat resistance, which is heating durability, is evaluated as applicable to commercialization compared to products using metals currently in use.

Hydrogen Absorption and Desorption Behaviors of the Metal Hydride Fuel Tank for Hydrogen Vehicle (수소저장합금을 이용한 수소자동차 연료저장탱크의 수소흡수-방출거동에 관한 연구)

  • Lee, Soo-Geun;Lee, Han-Ho;Jung, Jai-Han;Kim, Dong-Myung;Lee, Jai-Young
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.5 no.2
    • /
    • pp.81-90
    • /
    • 1994
  • The hydrogen fuel tanks having hydrogen storing capacity of about 300g and 1200g are manufactured using $MmNi_{4.7}Al_{0.25}V_{0.05}Fe_{0.001}$ alloy. They are composed of several unit reactor made of Cu-tube(outer diameter = 50.1mm, thickness = 2mm). In order to increase the heat and mass transfer property of the hydride bed, Al-plates are inserted perpendicular to axial direction at intervals of 5mm and three arteries of diameter 8mm are installed symmetrically in each unit reactor. Hydrogen absorption is proceeded about 80% within 30 minute and is completed within 60 minute at the conditions of charging hydrogen pressure of 25atm and temperature of $22^{\circ}C$. On desorbing hydrogen at a constant rate of 30 slm at $20^{\circ}C$, discharging hydrogen pressure is sustained at 3~5atm for 120 minutes. The discharging pressure is increased upto 5~8atm as the increase of the reactor temperature to $30^{\circ}C$. From the experimental results and the brief discussions about the hydrogen absorption and disorption behaviors of the hydrogen storage tank, it is suggested that the behaviors of hydrogen charging and discharging could be controlled by adjusting the operating parameters and the reactor design parameters.

  • PDF

An experimental study on the low temperature melting treatment of waste asbestos for using (폐석면의 활용을 위한 저온 용융처리에 대한 실험적 연구)

  • Song, Tae Hyeob;Kim, Young Hun;Park, Ji Sun;Lee, Sea Hyun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.2
    • /
    • pp.83-90
    • /
    • 2010
  • As a reinforced fabric, asbestos has been utilized as a fire-resistant material as it has a superior flexural stiffness and heat resistance up to $1500^{\circ}C$. However, due to its harmfulness, its use has been prohibited recently and the even the installed asbestos materials are being repaired or supplemented if there is a concern about flying. Asbestos is mainly used for construction panels as a reinforced fabric and coating materials to ensure the fire-resistance of steel frames. Asbestos was used as fire-resistant materials for steel frames until 1991 and then prohibited as Act on Industrial Safety and Health limits the concentration of asbestos in the air. Classified as a designated waste according to Act on Waste Control, asbestos must be buried if there is no possibility of flying (panel-type materials) or cement-solidified and then buried if there is a possibility of flying (spray coating material) In general, it is required that a new waste landfill include a certain landfill facility for designated waste, but in reality there is an absolute storage of landfill facilities for designated waste as they only install facilities of the size required by the regulations. This could result in the 2nd environmental pollution as they cannot process asbestos wastes which will be generated in large volume in the future. This study explores a method that melts asbestos wastes at $700^{\circ}C$ rather than cement-solidifying the waste asbestos from construction sites, especially asbestos-containing spray coating. The study results showed that there was no change in the composition and shape even though asbestos wastes was melted at $1300^{\circ}C$, but there was a change for the specimen which was process in advance for low temperature melting and then melt at $900^{\circ}C$.

  • PDF

A COMPARATIVE EXPERIMENTAL STUDY ON THE SURFACE CHARACTERISTICS AND THE FITTNESS OF THE RESILIENT DENTURE LINES (탄성 의치상 이장재의 표면 특성 및 적합도에 관한 비교 실험 연구)

  • Lee, Soo-Back;Yoon, Chang-Keun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.25 no.1
    • /
    • pp.137-154
    • /
    • 1987
  • The purpose of this investigation was to determine the surface characteristics and the fittness of the resilienct denture lines. Firstly, 50 samples ($2.0{\times}4.0{\times}0.3cm$) of 4 resilient lining materials (Molloplast B, Coe Super Soft, Mollosil, Coe Soft) and one conventional acrylic resin (K-33) were processed according to manufacture's direction and examined the surface characteristics by use of surface profilometer and scanning electron microscopy. Secondly, 50 identical maxillary casts were made and 50 denture bases were pro cessed of 4 resilient liners and one conventional acrylic resin and they were stored in the room temperature water bath of 1 day, 1 week, 2 weeks, 3 weeks, 4 weeks and 6 weeks after processing. The original casts were cut away 1 cm from the posterior border, the dentures were seated, and the existing space was measured at seven regions according to the storage time by use of the modified thickness guage. The results were as follows. 1. Surface roughness (Rz) were $4.00{\pm}1.60{\mu}m$ in Mollosil, $4.47{\pm}2.21{\mu}m$ in Molloplast B, $7.46{\pm}1.70{\mu}m$ in Coe Super Soft, $12.70{\pm}2.39{\mu}m$ in Coe Soft and $13.03{\pm}2.74{\mu}m$ in K-33. 2. The generation of porosity was far more active in cold-cured resilient liners (Coe Soft and Mollosil) than in heat cured resilient liners (Molloplast B, and Coe Super Soft) and conventional heat cured resin (K-33). 3. Denture bases showed the greatest discrepancy at the central portion of the posterior palatal border and the intimate contact in the buccal flange regardless of denture base materials. 4. When the denture bases were stored in the water for 1 day and 6 weeks after processing, the sum of average discrepancies in the seven regions of the denture base was the greatest in K-33 followed by Molloplast B, Mollosil, Coe Soft and Coe Super Soft but followed by Coe Soft, Molloplast B, Mollosil, Coe Super Soft in that order respectively. 5. There was not a significant difference (p>0.05) in Coe Super Soft, K-33 but there was a significant difference (P<0.01) in Molloplast B, Mollosil, Coe Soft at the amount of dimensional changes according to the storage time.

  • PDF

A Study on Replay Experiments and Thermal Analysis for Autoignition Phenomenon of Shredded Waste Tires (폐타이어 분쇄물의 자연발화현상에 대한 재연실험 및 열분석에 관한 연구)

  • Koh, Jae Sun;Jang, Man Joon
    • Fire Science and Engineering
    • /
    • v.26 no.6
    • /
    • pp.99-108
    • /
    • 2012
  • These days, spontaneous ignition phenomena by oxidizing heat frequently occur in the circumstances of processing and storing waste tires. Therefore, to examine the phenomena, in this work, this researcher conducted the tests of fires of fragmented waste tires (shredded tire), closely investigated components of the fire residual materials collected in the processing and storing place, and analyzed the temperature of the starting of the ignition, weight loss, and heat of reaction. For the study, this researcher conducted fire tests with fragmented waste tires in the range of 2.5 mm to 15 mm, whose heat could be easily accumulated, and performed heat analysis through DSC and TGA, DTA, DTG, and GC/MS to give scientific probability to the possibility of spontaneous ignition. According to the tests, at the 48-hour storage, rapid increase in temperature ($178^{\circ}C$), Graphite phenomenon, smoking were observed. And the result from the DTA and DTG analysis showed that at $166.15^{\circ}C$, the minimum weight loss occurred. And, the result from the test on the waste tire analysis material 1 (Unburnt) through DSC and TGA analysis revealed that at $180^{\circ}C$ or so, thermal decomposition started. As a result, the starting temperature of ignition was considered to be $160^{\circ}C$ to $180^{\circ}C$. And, at $305^{\circ}C$, 10 % of the initial weight of the material reduced, and at $416.12^{\circ}C$, 50 % of the intial weight of the material decreased. The result from the test on oxidation and self-reaction through GC/MS and DSC analysis presented that oxidized components like 1,3 cyclopentnadiene were detected a lot. But according to the result from the heat analysis test on standard materials and fragmented waste tires, their heat value was lower than the basis value so that self-reaction was not found. Therefore, to prevent spontaneous ignition by oxidizing heat of waste tires, it is necessary to convert the conventional process into Cryogenic Process that has no or few heat accumulation at the time of fragmentation. And the current storing method in which broken and fragmented materials are stored into large burlap bags (500 kg) should be changed to the method in which they are stored into small burlap bags in order to prevent heat accumulation.

Application of Hierarchical ZnCo2O4 Hollow Nanofibers for Anode Materials in Lithium-ion Batteries (계층적 구조를 갖는 중공형 ZnCo2O4 나노 섬유의 리튬이온배터리 음극소재 적용)

  • Jeong, Sun Young;Cho, Jung Sang
    • Korean Chemical Engineering Research
    • /
    • v.57 no.4
    • /
    • pp.559-564
    • /
    • 2019
  • Hierarchical $ZnCo_2O_4$ hollow nanofibers were prepared by electrospinning and subsequent heat-treatment process. The spinning solution containing polystyrene (PS) nanobeads was electrospun to nanofibers. During heat-treatment process, PS nanobeads in the composite were decomposed and therefore generated numerous pores uniformly in the structure, which facilitated the heat transfer and gas penetration into the structure. The resulting hierarchical $ZnCo_2O_4$ hollow nanofibers were applied as an anode material for lithium-ion batteries. The discharge capacity of the nanofibers was $815mA\;h\;g^{-1}$ ($646mA\;h\;cm^{-3}$) after the 300th cycle at a high current density of $1.0A\;g^{-1}$. However, $ZnCo_2O_4$ nanopowders showed the discharge capacity of $487mA\;h\;g^{-1}$ ($450mA\;h\;cm^{-3}$) after 300th cycle. The excellent lithium ion storage property of the hierarchical $ZnCo_2O_4$ hollow nanofibers was attributed to the synergetic effects of the hollow nanofiber structure and the $ZnCo_2O_4$ nanocrystals composing the shell. The hierarchical hollow nanofiber structure introduced in this study can be extended to various metal oxides for various applications, including energy storage.

Preparation of CoFe2O4 Nanoparticle Decorated on Electrospun Carbon Nanofiber Composite Electrodes for Supercapacitors (코발트 페라이트 나노입자/탄소 나노섬유 복합전극 제조 및 슈퍼커패시터 특성평가)

  • Hwang, Hyewon;Yuk, Seoyeon;Jung, Minsik;Lee, Dongju
    • Journal of Powder Materials
    • /
    • v.28 no.6
    • /
    • pp.470-477
    • /
    • 2021
  • Energy storage systems should address issues such as power fluctuations and rapid charge-discharge; to meet this requirement, CoFe2O4 (CFO) spinel nanoparticles with a suitable electrical conductivity and various redox states are synthesized and used as electrode materials for supercapacitors. In particular, CFO electrodes combined with carbon nanofibers (CNFs) can provide long-term cycling stability by fabricating binder-free three-dimensional electrodes. In this study, CFO-decorated CNFs are prepared by electrospinning and a low-cost hydrothermal method. The effects of heat treatment, such as the activation of CNFs (ACNFs) and calcination of CFO-decorated CNFs (C-CFO/ACNFs), are investigated. The C-CFO/ACNF electrode exhibits a high specific capacitance of 142.9 F/g at a scan rate of 5 mV/s and superior rate capability of 77.6% capacitance retention at a high scan rate of 500 mV/s. This electrode also achieves the lowest charge transfer resistance of 0.0063 Ω and excellent cycling stability (93.5% retention after 5,000 cycles) because of the improved ion conductivity by pathway formation and structural stability. The results of our work are expected to open a new route for manufacturing hybrid capacitor electrodes containing the C-CFO/ACNF electrode that can be easily prepared with a low-cost and simple process with enhanced electrochemical performance.

Additive Effects on Sintering of Si/SiC Mixtures (Si/SiC 혼합물의 소결특성에 미치는 첨가제의 영향)

  • Kim, Soo Ryong;Kwon, Woo Teck;Kim, Younghee;Kim, Jong Il;Lee, Yoon Joo;Lee, Hyun Jae;Oh, Sea Cheon
    • Korean Journal of Materials Research
    • /
    • v.22 no.12
    • /
    • pp.701-705
    • /
    • 2012
  • The effects of clay, aluminum hydroxide, and carbon powder on the sintering of a Si/SiC mixture from photovoltaic silicon-wafer production were investigated. Sintering temperature was fixed at $1,350^{\circ}C$ and the sintered bodies were characterized by SEM and XRD to analyze the microstructure and to measure the apparent porosity, absorptivity, and apparent density. The XRD peak intensity of SiC in the sintered body was increased by adding 5% carbon to the Si/SiC mixture. From this result, it is confirmed that Si in the Si/SiC mixture had reacted with the added carbon. Addition of aluminum hydroxide decreased the cristobalite phase and increased the stable mullite phase. The measurement of the physical properties indicates that adding carbon to the Si/SiC mixture enables us to obtain a dense sintered body that has high apparent density and low absorptivity. The sintered body produced from the Si/SiC mixture with aluminum hydroxide and carbon powder as sintering additives can be applied to diesel particulate filters or to heat storage materials, etc., since it possesses high thermal conductivity, and anticorrosion and antioxidation properties.