Browse > Article
http://dx.doi.org/10.4313/JKEM.2015.28.12.765

State of the Art and Research Trends on Electrode Materials of Thermal Batteries  

Kang, Seung-Ho (College of Information and Communication Engineering, Sungkyunkwan University)
Park, Byung-Jun (The 4th R&D Institute-4, Agency for Defense Development)
Im, Chae-Nam (The 4th R&D Institute-4, Agency for Defense Development)
Cho, Sung-Baek (The 4th R&D Institute-4, Agency for Defense Development)
Cheong, Hae-Won (The 4th R&D Institute-4, Agency for Defense Development)
Yi, Junsin (College of Information and Communication Engineering, Sungkyunkwan University)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.28, no.12, 2015 , pp. 765-770 More about this Journal
Abstract
Thermal batteries are heat-activated primary reserve power sources that use inorganic salt as electrolytes and specially designed to meet extremely long or environmentally severe storage requirements. They are primarily used to deliver high power for relatively short periods in such applications as fuzes, missiles, ordnance and other military applications. In this paper, we describe a general overview and research trends on electrode materials for thermal batteries.
Keywords
Reserve battery; Thermal battery; Electrode; Thermal stability; LAN;
Citations & Related Records
연도 인용수 순위
  • Reference
1 D. Linden and T. B. Reddy, Handbook of Batteries 3rd ed. (McGraw-Hill, 2002)
2 R. A. Guidotti and P. Masset, J. Pow. Sourc., 161, 1443 (2006).   DOI
3 S. W. Yoon, J. T. Son, and J. S. Oh, J. Pow. Sourc., 162, 1421 (2006).   DOI
4 H.S.P. Kim, S. B. Cho, B. S. Koo, J. M. Kim, H. W. Cheong, E. J. Yoon, B. T. Ryu, S. J. Lee, B. J. Lim, and Y. O. Ko, Key Eng. Materials, 227, 625 (2005).
5 M. Peabody, T. Griffin and K. Outt, 46th Annual Fuze Conference (San Antonio, 2002)
6 R. A. Guidotti and P. Masset, J. Pow. Sourc., 183, 388 (2008).   DOI
7 E. Durliat, Latest Technology Improvements in Thermal Batteries, http://www.asb-group.com
8 Y. S. Choi, H. R. Yu, and H. W. Cheong, J. Pow. Sourc., 276, 102 (2015).   DOI
9 P. Masset and R. A. Guidotti, J. Pow. Sourc., 177, 595 (2008).   DOI
10 P. Masset, Proc. of EUCHEM Conference on Molten Salts and Ionic Liquids, 596 (2008).
11 P. Masset and R. A. Guidotti, J. Pow. Sourc., 178, 456 (2008).   DOI
12 R. A. Guidotti, P. J. Nigrey, F. W. Reinhardet, and J. G. Odinek, Proc. of Pow. Sourc. Conf., 9.5 (2004).
13 R. A. Guidotti, P. J. Nigrey, F. W. Reinhardet, and J. G. Odinek, Proc. of Pow. Sourc. Conf., 250 (2004).
14 M. Au, J. Pow. Sourc., 115, 360 (2003).   DOI
15 R. A. Guidotti, F. W. Reinhardt, J. Dai, T. D. Xiao, and D. Reisner, American Institute of Aeronautics and Astronautics, Energy Conversion Engineering Conference and Exhibit (IECEC) 35th Intersociety, 2 (Las Vegas, U.S.A., 2000) p. 976
16 J. K. Pugy, An Lang, E. Dayalan, and D. Harney, Proc. of Pow. Sourc. Conf., 369 (2008).
17 P. Masset and R. A. Guidotti, J. Pow. Sourc., 164, 397 (2007).   DOI
18 R. A. Guidotti and F. R. Reinhardt, 19th International Power Sources Symposium (Brighton, England, 1995)
19 P. Masset, S. Schoeffert, J. Y. Poinso, and J. C. Poigne, J. Electrochem. Soc., 152, A405 (2005).   DOI
20 P. Masset, J. Pow. Sourc., 160, 688 (2006). [DOI: http://dx.doi.org/10.1016/j.jpowsour.2005.12.091]   DOI
21 T. D. Kaun, Proc. of Pow. Sourc. Conf., 12.1 (2004).
22 T. D. Kaun and M. C. Hash, Proc. of Pow. Sourc. Conf., 291 (2000).
23 T. D. Kaun and B. Lundeen, A. Hebden, and C. Bowen, Proc. of Pow. Sourc. Conf., 365 (2008).