• Title/Summary/Keyword: Heat source system

Search Result 1,073, Processing Time 0.032 seconds

Growth and photoluminescience propeties for $CuInSe_2$ single crystal thin film by Hot Wall Epitaxy (Hot Wall Epitaxy (HWE)법에 의한 $CuInSe_2$ 단결정 박막 성장과 점결함)

  • Hong, Kwang-Joon;Lee, Sang-Youl;Kim, Hyun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.111-112
    • /
    • 2005
  • To obtain the single crystal thin films, $CuInSe_2$, mixed crystal was deposited on thoroughly etched semi-insulating GaAs(100) substrate by the hot wail epitaxy (HWE) system. The source and substrate temperatures were 620$^{\circ}C$ and 410$^{\circ}C$, respectively. The crystalline structure of the single crystal thin films was investigated by the photoluminescence and double crystal X-ray diffraction (DCXD). The carrier density and mobilily of $CuInSe_2$ single crystal thin films measured with Hall effect by van der Pauw method are $9.62\times10^{16}$ $cm^{-3}$ and $296cm^2/V{\cdot}s$ at 293 K, respectively. The temperature dependence of the energy band gap of the CulnSe$_2$ obtained from the absorption spectra was well described by the Varshni's relation E$_g$(T) = 1.1851 eV - ($8.99\times10^{-4}$ ev/K)T$_2$/(T + 153K). After the as-grown $CuInSe_2$ single crystal thin films was annealed in Cu-, Se-, and In-atmospheres the origin of point defects of $CuInSe_2$ single crystal thin films has been investigated by the photoluminescence(PL) at 10 K. The nat ive defects of V$_{Cu}$, $V_{Se}$, Cu$_{int}$, and $Se_{int}$ obtained by PL measurements were classified as a donors or accepters type. And we concluded that the heat-treatment in the Cu-atmosphere converted $CuInSe_2$ single crystal thin films to an optical n-type. Also, we confirmed that In in $CuInSe_2$/GaAs did not form the native defects because In in $CuInSe_2$ single crystal thin films existed in the form of stable bonds.

  • PDF

Evaluation of the Stress Corrosion Cracking Behavior of Inconel G00 Alloy by Acoustic Emission (음향 방출에 의한 인코넬 600 합금의 응력 부식 균열 거동 평가)

  • Sung, Key-Yong;Kim, In-Sup;Yoon, Young-Ku
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.16 no.3
    • /
    • pp.174-183
    • /
    • 1996
  • Acoustic emission(AE) response during stress corrosion cracking(SCC) of Inconel 600 alloy has been monitored to study the AE detectability of crack generation and growth by comparing the crack behavior with AE parameters processed, and to evaluate the applicability as a nondestructive evaluation(AE) by measuring the minimum crack size detectable with AE. Variously heat-treated specimens were tensioned by constant extension rate test(CERT) in various extension rate to give rise to the different SCC behavior of specimens. The AE amplitude level generated from intergranular stress-corrosion cracking(IGSCC) is higher than those from ductile fracture and mechanical deformation, which means the AE amplitude can be a significant parameter for distinguishing the An source. AE can also provide the effective means to identify the transition from the small crack initiation and formation of dominant cracks to the dominant crack growth. Minimum crack size detectable with AE is supposed to be approximately 200 to $400{\mu}m$ in length and below $100{\mu}m$ in depth. The test results show that AE technique has a capability for detecting the early stage of IGSCC growth and the potential for practical application as a NDE.

  • PDF

Microstructure Evaluation and Wear Resistance Property of Al-Si-X/Al2O3 Composite by the Displacement Reaction in Al-Mg Alloy Melt using High Energy Mechanical Milled Al-SiO2-X Composite Powder (HEMM Al-SiO2-X 복합 분말을 Al-Mg 용탕에서 자발 치환반응으로 제조된 Al-Si-X/Al2O3 복합재료의 조직 및 마멸 특성)

  • Woo, Kee-Do;Kim, Dong-Keon;Lee, Hyun-Bom;Moon, Min-Seok;Ki, Woong;Kwon, Eui-Pyo
    • Korean Journal of Materials Research
    • /
    • v.18 no.6
    • /
    • pp.339-346
    • /
    • 2008
  • Single-crystal $ZnIn_2S_4$ layers were grown on a thoroughly etched semi-insulating GaAs (100) substrate at $450^{\circ}C$ with a hot wall epitaxy (HWE) system by evaporating a $ZnIn_2S_4$ source at $610^{\circ}C$. The crystalline structures of the single-crystal thin films were investigated via the photoluminescence (PL) and Double-crystal X-ray rocking curve (DCRC). The temperature dependence of the energy band gap of the $ZnIn_2S_4$ obtained from the absorption spectra was well described by Varshni's relationship, $E_g(T)=2.9514\;eV-(7.24{\times}10^{-4}\;eV/K)T2/(T+489K)$. After the as-grown $ZnIn_2S_4$ single-crystal thin films was annealed in Zn-, S-, and In-atmospheres, the origin-of-point defects of the $ZnIn_2S_4$ single-crystal thin films were investigated via the photoluminescence (PL) at 10 K. The native defects of $V_{Zn}$, $V_S$, $Zn_{int}$, and $S_{int}$ obtained from the PL measurements were classified as donor or acceptor types. Additionally, it was concluded that a heat treatment in an S-atmosphere converted $ZnIn_2S_4$ single crystal thin films into optical p-type films. Moreover, it was confirmed that In in $ZnIn_2S_4$/GaAs did not form a native defects, as In in $ZnIn_2S_4$ single-crystal thin films existed in the form of stable bonds.

The Effect of Thermal Annealing and Growth of $CuGaSe_2$ Single Crystal Thin Film for Solar Cell Application (태양전지용 $CuGaSe_2$ 단결정 박막 성장과 열처리 효과)

  • Hong, Kwang-Joon;You, Sang-Ha
    • Journal of the Korean Solar Energy Society
    • /
    • v.23 no.2
    • /
    • pp.59-70
    • /
    • 2003
  • A stoichiometric mixture of evaporating materials for $CuGaSe_2$ single crystal thin films was prepared from horizontal electric furnace. Using extrapolation method of X-ray diffraction patterns for the polycrystal $CuGaSe_2$, it was found tetragonal structure whose lattice constant $a_0$ and $c_0$ were $5.615{\AA}$ and $11.025{\AA}$, respectively. To obtain the single crystal thin films, $CuGaSe_2$ mixed crystal was deposited on thoroughly etched semi-insulating GaAs(100) substrate by the hot wall epitaxy (HWE) system. The source and substrate temperatures were $610^{\circ}C$ and $450^{\circ}C$, respectively. The crystalline structure of the single crystal thin films was investigated by the photoluminescence and double crystal X-ray diffraction (DCXD). The carrier density and mobility of $CuGaSe_2$ single crystal thin films measured with Hall effect by van der Pauw method are $5.01\times10^{17}cm^{-3}$ and $245cm^2/V{\cdot}s$ at 293K. respectively. The temperature dependence of the energy band gap of the $CuGaSe_2$ obtained from the absorption spectra was well described by the Varshni's relation, $E_g$(T)=1.7998 eV-($8.7489\times10^{-4}$ eV/K)$T^2$/(T+335K). After the as-grown $CuGaSe_2$ single crystal thin films was annealed in Cu-, Se-, and Ga-atmospheres, the origin of point defects of $CuGaSe_2$ single crystal thin films has been investigated by the photoluminescence(PL) at 10 K. The native defects of $V_{CU},\;V_{Se},\;Cu_{int}$ and $Se_{int}$ obtained by PL measurements were classified as a donors or acceptors type. And we concluded that the heat-treatment in the Cu-atmosphere converted $CuGaSe_2$ single crystal thin films to an optical n-type. Also, we confirmed that Ga in $CuGaSe_2$/GaAs did not form the native defects because Ga in $CuGaSe_2$ single crystal thin films existed in the form of stable bonds.

Electrical Properties of Al3+ and Y3+ Co-doped SnO2 Transparent Conducting Films (Al3+와 Y3+ 동시치환 SnO2 투명전극 박막의 전기적 특성)

  • Kim, Geun-Woo;Seo, Yong-Jun;Sung, Chang-Hoon;Park, Keun-Young;Cho, Ho-Je;Heo, Si-Nae;Koo, Bon-Heun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.10
    • /
    • pp.805-810
    • /
    • 2012
  • Transparent conducting oxides (TCOs) have wide range of application areas in transparent electrode for display devices, Transparent coating for solar energy heat mirrors, and electromagnetic wave shield. $SnO_2$ is intrinsically an n-type semiconductor due to oxygen deficiencies and has a high energy-band gap more than 3.5 eV. It is known as a transparent conducting oxide because of its low resistivity of $10^{-3}{\Omega}{\cdot}cm$ and high transmittance over 90% in visible region. In this study, co-doping effects of Al and Y on the properties of $SnO_2$ were investigated. The addition of Y in $SnO_2$ was tried to create oxygen vacancies that increase the diffusivity of oxygen ions for the densification of $SnO_2$. The addition of Al was expected to increase the electron concentration. Once, we observed solubility limit of $SnO_2$ single-doped with Al and Y. $\{(x/2)Al_2O_3+(x/2)Y_2O_3\}-SnO_2$ was used for the source of Al and Y to prevent the evaporation of $Al_2O_3$ and for the charge compensation. And we observed the valence changes of aluminium oxide because generally reported of valence changes of aluminium oxide in Tin - Aluminium binary system. The electrical properties, solubility limit, densification and microstructure of $SnO_2$ co-doped with Al and Y will be discussed.

A optimization study on the preparation and coating conditions on honeycomb type of Pd/TiO2 catalysts to secure hydrogen utilization process safety (수소 활용공정 안전성 확보를 위한 Pd/TiO2 수소 상온산화 촉매의 제조 및 허니컴 구조의 코팅 조건 최적화 연구)

  • Jang, Young hee;Lee, Sang Moon;Kim, Sung Su
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.29 no.4
    • /
    • pp.47-54
    • /
    • 2021
  • In this study, the performance of a honeycomb-type hydrogen oxidation catalyst to remove hydrogen in a hydrogen economy society to secure leaking hydrogen. The Pd/TiO2 catalyst was prepared based on a liquid phase reduction method that is not exposed to a heat source, and it was showed through H2-chemisorption analysis that it existed as very small active particles of 2~4 nm. In addition, it was found that the metal dispersion decreased and the active particle size increased as the reduction reaction temperature increased. It was meant that the active metal particle size and the hydrogen oxidation performance were in a proportional correlation, so that it was consistent with the hydrogen oxidation performance reduction result. The prepared catalyst was coated on a support in the form of a honeycomb so that it could be applied to the hydrogen industrial process. When 20 wt% or more of the AS-40 binder was coated, oxidation performance of 90% or more was observed under low-concentration hydrogen conditions. It was showed through SEM analysis that long-term catalytic activity can be expected by enhancing the adhesion strength of the catalyst and preventing catalyst desorption. It is a basic research that can secure safety in a hydrogen society such as gasification, organic resource, and it can be utilized as a system that can respond to unexpected safety accidents in the future.

Analysis of Greenhouse Thermal Environment by Model Simulation (시뮬레이션 모형에 의한 온실의 열환경 분석)

  • 서원명;윤용철
    • Journal of Bio-Environment Control
    • /
    • v.5 no.2
    • /
    • pp.215-235
    • /
    • 1996
  • The thermal analysis by mathematical model simulation makes it possible to reasonably predict heating and/or cooling requirements of certain greenhouses located under various geographical and climatic environment. It is another advantages of model simulation technique to be able to make it possible to select appropriate heating system, to set up energy utilization strategy, to schedule seasonal crop pattern, as well as to determine new greenhouse ranges. In this study, the control pattern for greenhouse microclimate is categorized as cooling and heating. Dynamic model was adopted to simulate heating requirements and/or energy conservation effectiveness such as energy saving by night-time thermal curtain, estimation of Heating Degree-Hours(HDH), long time prediction of greenhouse thermal behavior, etc. On the other hand, the cooling effects of ventilation, shading, and pad ||||&|||| fan system were partly analyzed by static model. By the experimental work with small size model greenhouse of 1.2m$\times$2.4m, it was found that cooling the greenhouse by spraying cold water directly on greenhouse cover surface or by recirculating cold water through heat exchangers would be effective in greenhouse summer cooling. The mathematical model developed for greenhouse model simulation is highly applicable because it can reflects various climatic factors like temperature, humidity, beam and diffuse solar radiation, wind velocity, etc. This model was closely verified by various weather data obtained through long period greenhouse experiment. Most of the materials relating with greenhouse heating or cooling components were obtained from model greenhouse simulated mathematically by using typical year(1987) data of Jinju Gyeongnam. But some of the materials relating with greenhouse cooling was obtained by performing model experiments which include analyzing cooling effect of water sprayed directly on greenhouse roof surface. The results are summarized as follows : 1. The heating requirements of model greenhouse were highly related with the minimum temperature set for given greenhouse. The setting temperature at night-time is much more influential on heating energy requirement than that at day-time. Therefore It is highly recommended that night- time setting temperature should be carefully determined and controlled. 2. The HDH data obtained by conventional method were estimated on the basis of considerably long term average weather temperature together with the standard base temperature(usually 18.3$^{\circ}C$). This kind of data can merely be used as a relative comparison criteria about heating load, but is not applicable in the calculation of greenhouse heating requirements because of the limited consideration of climatic factors and inappropriate base temperature. By comparing the HDM data with the results of simulation, it is found that the heating system design by HDH data will probably overshoot the actual heating requirement. 3. The energy saving effect of night-time thermal curtain as well as estimated heating requirement is found to be sensitively related with weather condition: Thermal curtain adopted for simulation showed high effectiveness in energy saving which amounts to more than 50% of annual heating requirement. 4. The ventilation performances doting warm seasons are mainly influenced by air exchange rate even though there are some variations depending on greenhouse structural difference, weather and cropping conditions. For air exchanges above 1 volume per minute, the reduction rate of temperature rise on both types of considered greenhouse becomes modest with the additional increase of ventilation capacity. Therefore the desirable ventilation capacity is assumed to be 1 air change per minute, which is the recommended ventilation rate in common greenhouse. 5. In glass covered greenhouse with full production, under clear weather of 50% RH, and continuous 1 air change per minute, the temperature drop in 50% shaded greenhouse and pad & fan systemed greenhouse is 2.6$^{\circ}C$ and.6.1$^{\circ}C$ respectively. The temperature in control greenhouse under continuous air change at this time was 36.6$^{\circ}C$ which was 5.3$^{\circ}C$ above ambient temperature. As a result the greenhouse temperature can be maintained 3$^{\circ}C$ below ambient temperature. But when RH is 80%, it was impossible to drop greenhouse temperature below ambient temperature because possible temperature reduction by pad ||||&|||| fan system at this time is not more than 2.4$^{\circ}C$. 6. During 3 months of hot summer season if the greenhouse is assumed to be cooled only when greenhouse temperature rise above 27$^{\circ}C$, the relationship between RH of ambient air and greenhouse temperature drop($\Delta$T) was formulated as follows : $\Delta$T= -0.077RH+7.7 7. Time dependent cooling effects performed by operation of each or combination of ventilation, 50% shading, pad & fan of 80% efficiency, were continuously predicted for one typical summer day long. When the greenhouse was cooled only by 1 air change per minute, greenhouse air temperature was 5$^{\circ}C$ above outdoor temperature. Either method alone can not drop greenhouse air temperature below outdoor temperature even under the fully cropped situations. But when both systems were operated together, greenhouse air temperature can be controlled to about 2.0-2.3$^{\circ}C$ below ambient temperature. 8. When the cool water of 6.5-8.5$^{\circ}C$ was sprayed on greenhouse roof surface with the water flow rate of 1.3 liter/min per unit greenhouse floor area, greenhouse air temperature could be dropped down to 16.5-18.$0^{\circ}C$, whlch is about 1$0^{\circ}C$ below the ambient temperature of 26.5-28.$0^{\circ}C$ at that time. The most important thing in cooling greenhouse air effectively with water spray may be obtaining plenty of cool water source like ground water itself or cold water produced by heat-pump. Future work is focused on not only analyzing the feasibility of heat pump operation but also finding the relationships between greenhouse air temperature(T$_{g}$ ), spraying water temperature(T$_{w}$ ), water flow rate(Q), and ambient temperature(T$_{o}$).

  • PDF

Genetic Model of Mineral Exploration for the Korean Au-Ag Deposits; Mugeug Mineralized Area (한국 금-은 광상의 효율적 탐사를 위한 성인모델;무극 광화대를 중심으로)

  • 최선규;이동은;박상준;최상훈;강흥석
    • Economic and Environmental Geology
    • /
    • v.34 no.5
    • /
    • pp.423-435
    • /
    • 2001
  • The gold-silver vein deposits in the Mugeug mineralized area are emplaced in late Cretaceous biotite granite associated with the pull-apart type Cretaceous Eumseong basin. Mugeug mine in northern part is composed of multiple veins showing relatively high gold fineness and is characterized by sericitization, chloritization and epidotization. The ore-forming fluids were evolved by dilution and cooling mechanisms at relatively high temperature and salinity (=30$0^{\circ}C$,1~9 equiv. wt. % NaCl) and highly-evolved meteoric water ($\delta$$^{18}$ O;-1.2~3.7$\textperthousand$) and gold mineralization associated with sulfides tormed at temperatures between 260 and 22$0^{\circ}C$ and within sulfur fugacity range of 10$^{-11.5}$ ~ 10$^{-13.5}$ atm. In contrast, Geumwang, Geumbong and Taegueg mines show the low fineness values, in southern part are characterized by increasing tendency of simple and/or stockwork veins and by kaolinitization, silicificatitan, carbonatization and smectitization. These droposits formed at relatively low temperature and salinity (<23$0^{\circ}C$, <3 equiv. wt. % NaCl) from ore-forming fluids containing greater amounts of less-evolved meteoric waters ($\delta$$^{18}$ O;-5.5~4.0$\textperthousand$), and silver mineralization representing various gold-and/or silver-bearing minerals formed at temperatures between 200 and 15$0^{\circ}C$ and from sulfur fugacity range of 10$^{-15}$ ~10$^{-18}$ atm These results imply that mineralization in the Mugueg area formed at shallow-crustal level and categorize these deposits as low-sulfidation epithermal type. The genetic differences between the northern and southern parts reflect the evolution of the hydrothermal system due to a different physicochemical environment from heat source area (Mugeug mine) to marginal area (Taegeum mine) in a geothermal field.

  • PDF

Visualizing the Results of Opinion Mining from Social Media Contents: Case Study of a Noodle Company (소셜미디어 콘텐츠의 오피니언 마이닝결과 시각화: N라면 사례 분석 연구)

  • Kim, Yoosin;Kwon, Do Young;Jeong, Seung Ryul
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.4
    • /
    • pp.89-105
    • /
    • 2014
  • After emergence of Internet, social media with highly interactive Web 2.0 applications has provided very user friendly means for consumers and companies to communicate with each other. Users have routinely published contents involving their opinions and interests in social media such as blogs, forums, chatting rooms, and discussion boards, and the contents are released real-time in the Internet. For that reason, many researchers and marketers regard social media contents as the source of information for business analytics to develop business insights, and many studies have reported results on mining business intelligence from Social media content. In particular, opinion mining and sentiment analysis, as a technique to extract, classify, understand, and assess the opinions implicit in text contents, are frequently applied into social media content analysis because it emphasizes determining sentiment polarity and extracting authors' opinions. A number of frameworks, methods, techniques and tools have been presented by these researchers. However, we have found some weaknesses from their methods which are often technically complicated and are not sufficiently user-friendly for helping business decisions and planning. In this study, we attempted to formulate a more comprehensive and practical approach to conduct opinion mining with visual deliverables. First, we described the entire cycle of practical opinion mining using Social media content from the initial data gathering stage to the final presentation session. Our proposed approach to opinion mining consists of four phases: collecting, qualifying, analyzing, and visualizing. In the first phase, analysts have to choose target social media. Each target media requires different ways for analysts to gain access. There are open-API, searching tools, DB2DB interface, purchasing contents, and so son. Second phase is pre-processing to generate useful materials for meaningful analysis. If we do not remove garbage data, results of social media analysis will not provide meaningful and useful business insights. To clean social media data, natural language processing techniques should be applied. The next step is the opinion mining phase where the cleansed social media content set is to be analyzed. The qualified data set includes not only user-generated contents but also content identification information such as creation date, author name, user id, content id, hit counts, review or reply, favorite, etc. Depending on the purpose of the analysis, researchers or data analysts can select a suitable mining tool. Topic extraction and buzz analysis are usually related to market trends analysis, while sentiment analysis is utilized to conduct reputation analysis. There are also various applications, such as stock prediction, product recommendation, sales forecasting, and so on. The last phase is visualization and presentation of analysis results. The major focus and purpose of this phase are to explain results of analysis and help users to comprehend its meaning. Therefore, to the extent possible, deliverables from this phase should be made simple, clear and easy to understand, rather than complex and flashy. To illustrate our approach, we conducted a case study on a leading Korean instant noodle company. We targeted the leading company, NS Food, with 66.5% of market share; the firm has kept No. 1 position in the Korean "Ramen" business for several decades. We collected a total of 11,869 pieces of contents including blogs, forum contents and news articles. After collecting social media content data, we generated instant noodle business specific language resources for data manipulation and analysis using natural language processing. In addition, we tried to classify contents in more detail categories such as marketing features, environment, reputation, etc. In those phase, we used free ware software programs such as TM, KoNLP, ggplot2 and plyr packages in R project. As the result, we presented several useful visualization outputs like domain specific lexicons, volume and sentiment graphs, topic word cloud, heat maps, valence tree map, and other visualized images to provide vivid, full-colored examples using open library software packages of the R project. Business actors can quickly detect areas by a swift glance that are weak, strong, positive, negative, quiet or loud. Heat map is able to explain movement of sentiment or volume in categories and time matrix which shows density of color on time periods. Valence tree map, one of the most comprehensive and holistic visualization models, should be very helpful for analysts and decision makers to quickly understand the "big picture" business situation with a hierarchical structure since tree-map can present buzz volume and sentiment with a visualized result in a certain period. This case study offers real-world business insights from market sensing which would demonstrate to practical-minded business users how they can use these types of results for timely decision making in response to on-going changes in the market. We believe our approach can provide practical and reliable guide to opinion mining with visualized results that are immediately useful, not just in food industry but in other industries as well.

Oxidative Stress-dependent Structural and Functional Regulation of 2-cysteine Peroxiredoxins In Eukaryotes Including Plant Cells (산화 스트레스에 의존한 식물 및 진핵세포 2-시스테인 퍼록시레독신의 기능 조절)

  • Jang, Ho-Hee;Kim, Sun-Young;Lee, Sang-Yeol
    • Journal of Plant Biotechnology
    • /
    • v.33 no.1
    • /
    • pp.1-9
    • /
    • 2006
  • Peroxiredoxins (Prxs) are ubiquitously distributed and play important functions in diverse cellular signaling systems. The proteins are largely classified into three groups, such as typical 2-Cys Prx, atypical 2-Cys Prx, and 1-Cys Prx, that are distinguished by their catalytic mechanisms and number of Cys residues. From the three classes of Prxs, the typical 2-Cys Prx containing the two-conserved Cys residues at its N-terminus and C-terminus catalyzes $H_2O_2$ with the use of thioredoxin (Trx) as an electron donor. During the catalytic cycle, the N-terminal Cys residue undergoes a peroxide-dependent oxidation to sulfenic acid, which can be further oxidized to sulfinic acid at the presence of high concentrations of $H_2O_2$ and a Trx system containing Trx, Trx reductase, and NADPH. The sulfinic acid form of 2-Cys Prx is reduced by the action of sulfiredoxin which requires ATP as an energy source. Under the strong oxidative or heat shock stress conditions, 2-Cys Prx in eukaryotes rapidly switches its protein structure from low-molecular-weight species to high-molecular-weight protein structures. In accordance with its structural changes, the protein concomitantly triggers functional switching from a peroxidase to a molecular chaperone, which can protect its substrate denaturation from external stress. In addition to its N-terminal active site, the C-terminal domain including 'YF-motif' of 2-Cys Prx plays a critical role in the structural changes. Therefore, the C-terminal truncated 2-Cys Prxs are not able to regulate their protein structures and highly resistant to $H_2O_2$-dependent hyperoxidation, suggesting that the reaction is guided by the peroxidatic Cys residue. Based on the results, it may be concluded that the peroxidatic Cys of 2-Cys Prx acts as an '$H_2O_2$-sensor' in the cells. The oxidative stress-dependent regulation of 2-Cys Prx provides a means of defense systems in cells to adapt stress conditions by activating intracellular defense signaling pathways. Particularly, 2-Cys Prxs in plants are localized in chloroplasts with a dynamic protein structure. The protein undergoes conformational changes again oxidative stress. Depending on a redox-potential of the chloroplasts, the plant 2-Cys Prx forms super-molecular weight protein structures, which attach to the thylakoid membranes in a reversible manner.