The Effect of Thermal Annealing and Growth of $CuGaSe_2$ Single Crystal Thin Film for Solar Cell Application

태양전지용 $CuGaSe_2$ 단결정 박막 성장과 열처리 효과

  • Published : 2003.06.30

Abstract

A stoichiometric mixture of evaporating materials for $CuGaSe_2$ single crystal thin films was prepared from horizontal electric furnace. Using extrapolation method of X-ray diffraction patterns for the polycrystal $CuGaSe_2$, it was found tetragonal structure whose lattice constant $a_0$ and $c_0$ were $5.615{\AA}$ and $11.025{\AA}$, respectively. To obtain the single crystal thin films, $CuGaSe_2$ mixed crystal was deposited on thoroughly etched semi-insulating GaAs(100) substrate by the hot wall epitaxy (HWE) system. The source and substrate temperatures were $610^{\circ}C$ and $450^{\circ}C$, respectively. The crystalline structure of the single crystal thin films was investigated by the photoluminescence and double crystal X-ray diffraction (DCXD). The carrier density and mobility of $CuGaSe_2$ single crystal thin films measured with Hall effect by van der Pauw method are $5.01\times10^{17}cm^{-3}$ and $245cm^2/V{\cdot}s$ at 293K. respectively. The temperature dependence of the energy band gap of the $CuGaSe_2$ obtained from the absorption spectra was well described by the Varshni's relation, $E_g$(T)=1.7998 eV-($8.7489\times10^{-4}$ eV/K)$T^2$/(T+335K). After the as-grown $CuGaSe_2$ single crystal thin films was annealed in Cu-, Se-, and Ga-atmospheres, the origin of point defects of $CuGaSe_2$ single crystal thin films has been investigated by the photoluminescence(PL) at 10 K. The native defects of $V_{CU},\;V_{Se},\;Cu_{int}$ and $Se_{int}$ obtained by PL measurements were classified as a donors or acceptors type. And we concluded that the heat-treatment in the Cu-atmosphere converted $CuGaSe_2$ single crystal thin films to an optical n-type. Also, we confirmed that Ga in $CuGaSe_2$/GaAs did not form the native defects because Ga in $CuGaSe_2$ single crystal thin films existed in the form of stable bonds.

Keywords

References

  1. W. Gebicki, J. Filipowicz and R. Bacewicz 'Raman scattering in novel $CuGaSe_2$ crystals' J. Phys. Condens. Matter, 8 8695-8703. 1996 https://doi.org/10.1088/0953-8984/8/44/018
  2. J. E. Kim, H. Y. Park, S. G. Lee and JY. Lee 'Photoacoustic spectra of $CuGaSe_2$'new physics, 28(4) : 515-519. 1998
  3. L. Kronik, L. Bursten and M. Leiboritch 'Band diagram of the polycrystalline CdS/CuGa(In)Se heterojunction' Appl.Phys. Lett, 67(10) : 1405-1407. 1995 https://doi.org/10.1063/1.114508
  4. N. Nadenau, U. Rau and A. Jasenek 'Electronic properties of $CuGaSe_2$-based heterojunction Solar cells. Part I. Transportanalysis' J. Appl. Phys. 87(1) : 584-593.2000 https://doi.org/10.1063/1.371903
  5. A. Jasenek, U. Rau and H. W. Schock 'Electronic properties of $CuGaSe_2$-based heterojunction Solar cells. PartⅡ.Defect spectroscopy' J. Appl. Phys. 87(1) :594-602. 2000 https://doi.org/10.1063/1.371904
  6. A. Jasenek, U. Rau and D. Thiess 'Elec-tronically active defects in $CuGaSe_2$-based heterojunction Solar cells' Thin Solid Films 361 : 415-419. 2000 https://doi.org/10.1016/S0040-6090(99)00754-3
  7. S. Endo and T. Irizo 'LED properties of $CuGaSe_2$ single crystal' J. Phys. Chem.Solids, 37 : 201-209. 1971 https://doi.org/10.1016/0022-3697(76)90162-1
  8. E. Grill, M, Uxxi, and A. V. Moskalonov 'Photoluminescience and Photocondutivity measurements on $CuGaSe_2$' J. Phys. C :Solid State Phys. 114 : 2361-2370. 1978
  9. H. Nakanish, 'Study of the Band Edge in $CuGaSe_2$ by photovoltaic effect' Jpn. J.Appl. Phys. 19 : 103-106. 1980 https://doi.org/10.1143/JJAP.19.103
  10. S. Charbonneau and E. Fortin, 'Stura-tion Photoconductivity in $CuGaSe_2$' Phys. Rew. B, 31(4) : 2326-2329. 1985 https://doi.org/10.1103/PhysRevB.31.2326
  11. Lawrences. Lerner, '$CuGaSe_2$ and $AgInSe_2$: Preparation and property of singlecrystal' J. Phys. Chem. Solids, Zn : 1-8.1966
  12. A. Shankat and R. D. Singh, 'Tetragonaldistortion for $A^I$ · $B^{II}$ · https://doi.org/10.1016/0022-3697(78)90123-3
  13. A. Iwai and M. Ueno, 'Properties of $CuGaSe_2$ single crystal thin film grown by Lp-Mocvb' J. Appl. Phys. 82 : 1423-1426. 1997 https://doi.org/10.1063/1.366285
  14. H. Ryosudo and K. Walter, 'Energybands of $CuGaSe_2$ in the chalcopyrite' Phys. Rew. B. 9(4) : 1719-1724. 1974 https://doi.org/10.1103/PhysRevB.9.1719
  15. K. J. Hong and T. S. jeong 'The charac-terization of ZnSe/GaAs epilayers grown by hot wall epitaxy' J. Cryst. Growth. 172 :89-96. 1997 https://doi.org/10.1016/S0022-0248(96)00725-7
  16. J. Bardeen, J. Chem. Phys. 6, 37 (1983)
  17. B. D. Cullity, 'Elements of X-ray Diffractions'. Caddson-Wesley, 1985, chap 11
  18. L. Nartinez, S. A. Lopez-Rivera, and V.Sagredo, Ⅱ Nouvo Ciouvo Cinento D2(6)(1983) 1687
  19. Elizabeth. A. Wood, Crystal Orientation manual, Columbia University Press,1963
  20. H. Fujita, J. Phys. Soc. 20 (1965) 109 https://doi.org/10.1143/JPSJ.20.109
  21. Y. P. Varshni, Physica. 34 (1967) 149 https://doi.org/10.1016/0031-8914(67)90062-6
  22. B. Tell, and J. C. Shay, Phys. Rev. B6(8) pp. 3008-3012 (1972) https://doi.org/10.1103/PhysRevB.6.3008