• Title/Summary/Keyword: Heat shock factor

Search Result 125, Processing Time 0.032 seconds

Cloning and Nucleotide Sequence Analysis of the rpoH Gene from Methylovorus sp. Strain SS1 DSM11726 (Methylovorus sp. Strain SS1 DSM11726으로부터 rpoH 유전자의 클로닝과 염기서열 분석)

  • Eom, Chi-Yong;Song, Seung-Eun;Park, Mi-Hwa;Kim, Young-Min
    • Microbiology and Biotechnology Letters
    • /
    • v.35 no.3
    • /
    • pp.177-183
    • /
    • 2007
  • Using complementation of RpoH deficient E. coli strain A7448, the rpoH gene encoding heat shock sigma factor 32 (${\sigma}^{32}$) from Methylovorus sp. strain SS1 DSM11726 was cloned and sequenced. Sequence analysis of a stretch of 1,796-bp revealed existence of an open reading frame encoding a polypeptide of 284 amino acid (32,006 dalton). Deduced amino acid sequence of the Methylovorus sp. strain SS1 RpoH showed that 59.6%, 39.1% and 51.4% identities with those of Nitrosomonas europaea (${\beta}$-proteobacteria), Agrobacterium tumefaciens ($\alpha$-proteobacteria) and E. coli (${\gamma}$-proteobacteria). The expression level of the functional ortholog of RpoH of Methylovorus sp. strain SS1 was increased transiently after heat induction, further indicating that it functions as a heat shock sigma factor.

A Novel Heptapeptide that Promotes Cellular Activity and Inhibits Photoaging in Fibroblasts (섬유아세포에서 세포 활성 촉진 및 광노화 억제 효능을 보이는 신규 헵타펩타이드)

  • Lee, Eung Ji;Kang, Hana;Hwang, Bo Byeol;Chung, Yong Ji;Kim, Eun Mi
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.48 no.2
    • /
    • pp.157-167
    • /
    • 2022
  • In this study, we investigated the effects of heptapeptide on cellular activation and inhibition of cellular damage induced by photoaging condition in NIH3T3 fibroblasts. Cell proliferation and extracellular matrix (ECM) expression were induced by heptapeptide. The reduced cell viability under photoaging condition through ultraviolet A (UVA) irradiation was increased by heptapeptide. And UVA-induced apoptosis, matrix metalloproteinases-1 (MMP-1) expression, and reactive oxygen species (ROS) level were decreased by heptapeptide. In addition, the inhibition of transforming growth factor-β (TGF-β)/smad signaling under UVA irradiation which resulting in reduction of ECM expression was also recovered by heptapeptide. We also tested the effect of heptapeptide under another photoaging condition through heat shock, and pre-treatment of heptapeptide prevented the phosphorylation of mitogen-activated protein kinase (MAPK) and MMP-1 expression induced by heat shock. From these results, it has been shown that the heptapeptide has protective effects on fibroblasts through the up-regulation of cellular activity and through the decreasing of intracellular ROS level induced by UVA irradiation or heat shock. It is expected that the dermal protection effect of heptapeptide can be applied as a new cosmetic material in the future.

Cloning of various bioreactive genes from cartilage tissues of Scyliorhinus torazame (두툽상어 연골 조직에서 생리 활성 유전자들의 cDNA 클로닝)

  • 김지태;김명순;장은령;김영진;김규원
    • Journal of Life Science
    • /
    • v.10 no.5
    • /
    • pp.533-541
    • /
    • 2000
  • Compared to mammal including human, many bioreactive genes that regulate various biological events has not been cloned and characterized yet in fishes, especially shark, Scyliorhinus torazame. In orther to isolate genes that regulate physiological processes in cartilaginors fishes, we performed reverse transcription-polymerase chain reaction (RT-PCR) using the RNA of cartilage tissues of Scyliofhinus torazame. The cloned partial genes were 86%, 80%, 73%, 84%, 75%, 79% identical to $\alpha$- actin, 90-kDa heat-shock protein, methyle-neterahydrofolate dehydrogenase-methenyltertrahydrofolate cyclohudrolase-formyltetrahydrofolate synthetase, ubiquitin, glutamine synthetase and connective tissue growth factor genes of human, respectively. They also have similar nucleotide sequence homologues with those of another species. These partial bioreactive genes elucidated in this study may support to studies of phylogenetic analysis based on evolutionary relationships between shark and other species.

  • PDF

Korean ginseng extract ameliorates abnormal immune response through the regulation of inflammatory constituents in Sprague Dawley rat subjected to environmental heat stress

  • Song, Ji-Hyeon;Kim, Kui-Jin;Choi, Seo-Yun;Koh, Eun-Jeong;Park, JongDae;Lee, Boo-Yong
    • Journal of Ginseng Research
    • /
    • v.43 no.2
    • /
    • pp.252-260
    • /
    • 2019
  • Background: Increases in the average global temperature cause heat stress-induced disorders by disrupting homeostasis. Excessive heat stress triggers an imbalance in the immune system; thus protection against heat stress is important to maintain immune homeostasis. Korean ginseng (Panax ginseng Meyer) has been used as a herbal medicine and displays beneficial biological properties. Methods: We investigated the protective effects of Korean ginseng extracts (KGEs) against heat stress in a rat model. Following acclimatization for 1 week, rats were housed at room temperature for 2 weeks and then exposed to heat stress ($40^{\circ}C$/2 h/day) for 4 weeks. Rats were treated with three KGEs from the beginning of the second week to the end of the experiment. Results: Heat stress dramatically increased secretion of inflammatory factors, and this was significantly reduced in the KGE-treated groups. Levels of inflammatory factors such as heat shock protein 70, interleukin 6, inducible nitric oxide synthase, and tumor necrosis factor-alpha were increased in the spleen and muscle upon heat stress. KGEs inhibited these increases by down-regulating heat shock protein 70 and the associated nuclear $factor-{\kappa}B$ and mitogen-activated protein kinase signaling pathways. Consequently, KGEs suppressed activation of T-cells and B-cells. Conclusion: KGEs suppress the immune response upon heat stress and decrease the production of inflammatory cytokines in muscle and spleen. We suggest that KGEs protect against heat stress by inhibiting inflammation and maintaining immune homeostasis.

Equilibrium Binding of Wild-type and Mutant Drosophila Heat Shock Factor DNA Binding Domain with HSE DNA Studied by Analytical Ultracentrifugation

  • Park, Jin-Ku;Kim, Soon-Jong
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.6
    • /
    • pp.1839-1844
    • /
    • 2012
  • We have investigated binding between wild-type and mutant Heat Shock Factor (HSF) DNA binding domains (DBDs) with 17-bp HSE containing a central 5'-NGAAN-3' element by equilibrium analytical ultracentrifugation using multi-wavelength technique. Our results indicate that R102 plays critical role in HSE recognition and the interactions are characterized by substantial negative changes of enthalpy (${\Delta}H^0_{\theta}=-9.90{\pm}1.13kcal\;mol^{-1}$) and entropy (${\Delta}S^0_{\theta}=-12.46{\pm}3.77cal\;mol^{-1}K^{-1}$) with free energy change, ${\Delta}G^0_{\theta}$ of $-6.15{\pm}0.03kcal\;mol^{-1}$. N105 plays minor role in the HSE interactions with ${\Delta}H^0_{\theta}$ of $-2.54{\pm}1.65kcal\;mol^{-1}$, ${\Delta}S^0_{\theta}$ of $19.28{\pm}5.50cal\;mol^{-1}K^{-1}$ and ${\Delta}G^0_{\theta}$ of $-8.35{\pm}0.05kcal\;mol^{-1}$, which are similar to those observed for wild-type DBD:HSE interactions (${\Delta}H^0_{\theta}=-3.31{\pm}1.86kcal\;mol^{-1}$, ${\Delta}S^0_{\theta}=17.38{\pm}6.20cal\;mol^{-1}K^{-1}$ and ${\Delta}G^0_{\theta}=-8.55{\pm}0.06kcal\;mol^{-1}$) indicating higher entropy contribution for both wild-type and N105A DBD bindings to the HSE.

Effects of Protease Treatment and Animal Behavior on the Dissociative Culture of Aplysia Neurons

  • Lee, Nuribalhae;Rim, Young-Soo;Kaang, Bong-Kiun
    • Animal cells and systems
    • /
    • v.13 no.3
    • /
    • pp.267-274
    • /
    • 2009
  • The dissociative culture technique of Aplysia neuron is one of the key methods that have been used for studies of cellular and molecular mechanisms of neuronal functioning. However, despite the advantages this method offers as an experimental model, its technical efficiency has had room for improvement. In this study, we examined certain putative factors that might affect the culture quality. The effects of neuronal damage induced by physical injuries, heat shock, and surface protein degradation were evaluated along with the correlation between the culture quality and animal behavior. As a result, we found that physical injury can be a critical factor that affects culture quality, whereas the heat shock and surface protein degradation had negligible effect on it. In addition, we discovered that siphon retraction time was not a good measurement for healthy neurons. Based on these findings, we suggest here an improved method in which the degree of physical injury is reduced by means of multiple protease treatment.

Heat Shock Proteins as Molecular Chaperons in Neuropsychiatry (열충격 단백질의 신경정신의학적 의의와 중요성)

  • Oh, Dong-Hoon;Yang, Byung-Hwan;Choi, Joonho
    • Korean Journal of Biological Psychiatry
    • /
    • v.14 no.4
    • /
    • pp.221-231
    • /
    • 2007
  • Recent researches have shown that important cellular-based autoprotective mechanisms are mediated by heat-shock proteins(HSPs), also called 'molecular chaperones'. HSPs as molecular chaperones are the primary cellular defense mechanism against damage to the proteome, initiating refolding of denatured proteins and regulating degradation after severe protein damage. HSPs also modulate multiple events within apoptotic pathways to help sustain cell survival following damaging stimuli. HSPs are induced by almost every type of stresses including physical and psychological stresses. Our nervous system in the brain are more vulnerable to stress and damage than any other tissues due to HSPs insufficiency. The normal function of HSPs is a key factor for endogenous stress adaptation of neural tissues. HSPs play an important role in the process of neurodevelopment, neurodegeneration, and neuroendocrine regulation. The altered function of HSPs would be associated with the development of several neuropsychiatric disorders. Therefore, an understanding of HSPs activities could help to improve autoprotective mechanism of our neural system. This paper will review the literature related to the significance of HSPs in neuropsychiatric field.

  • PDF

The Role of DNA Binding Domain in hHSF1 through Redox State (산화환원에 따른 hHSF1의 DNA binding domain의 역할)

  • Kim, Sol;Hwang, Yun-Jeong;Kim, Hee-Eun;Lu, Ming;Kim, An-D-Re;Moon, Ji-Young;Kang, Ho-Sung;Park, Jang-Su
    • Journal of Life Science
    • /
    • v.16 no.6
    • /
    • pp.1052-1059
    • /
    • 2006
  • The heat shock response is induced by environmental stress, pathophysiological state and non-stress conditions and wide spread from bacteria to human. Although translations of most proteins are stopped under a heat shock response, heat shock proteins (HSPs) are produced to protect cell from stress. When heat shock response is induced, conformation of HSF1 was changed from monomer to trimer and HSF1 specifically binds to DNA, which was called a heat shock element(HSE) within the promoter of the heat shock genes. Human HSF1(hHSFl) contains five cysteine(Cys) residues. A thiol group(R-SH) of Cys is a strong nucleophile, the most readily oxidized and nitrosylated in amino acid chain. This consideration suggests that Cys residues may regulate the change of conformation and the activity of hHSF1 through a redox-dependent thiol/disulfide exchange reaction. We want to construct role of five Cys residues of hHSF by redox reagents. According to two studies, Cys residues are related to trimer formation of hHSF1. In this study, we want to demonstrate the correlation between structural change and DNA-binding activity of HSF1 through forming disulfide bond and trimerization. In this results, we could deduce that DNA binding activity of DNA binding domain wasn't affected by redox for always expose outside to easily bind to DNA. DNA binding activity of wild-type HSF's DNA binding domain was affected by conformational change, as conformational structure change (trimerization) caused DNA binding domain.

Cadmium-Induced Gene Expression is Regulated by MTF-1, a Key Metal- Responsive Transcription Factor

  • Gupta, Ronojoy-Sen;Ahnn, Joohong
    • Animal cells and systems
    • /
    • v.7 no.3
    • /
    • pp.173-186
    • /
    • 2003
  • The transition metal cadmium is a serious occupational and environmental toxin. To inhibit cadmium-induced damage, cells respond by increasing the expression of genes that encode stress-responsive proteins. The metal-regulatory transcription factor 1 (MTF-1) is a key regulator of heavy-metal induced transcription of metallothionein-I and II and other genes in mammals and other metazoans. Transcriptional activation of genes by MTF-1 is mediated through binding to metal-responsive elements in the target gene promoters. Phosphorylation of MTF-1 plays a critical role in the cadmium-inducible transcriptional activation of metallothionein and other responses. Studies using inhibitors indicate that multiple kinases and signal transduction cascades, including those mediated by protein kinase C, tyrosine kinase and casein kinase II, are essential for cadmium-mediated transcriptional activation. In addition, calcium signaling is also involved in regulating metal-activated transcription. In several species, cadmium induces heat shock genes. Recently much progress has been made in elucidating the cellular machinery that regulates this metal-inducible gene expression. This review summarizes these recent advances in understanding the role of some known cadmium-responsive genes and the molecular mechanisms that activate metal-responsive transcription factor, MTF-1.

Cloning of Heat Shock Protein 70 and Its Expression Profile under an Increase of Water Temperature in Rhynchocypris kumgangensis (금강모치(Rhynchocypris kumgangensis)에서 heat shock protein 70의 클로닝과 수온상승에 의한 발현 변화 분석)

  • Im, Jisu;Ghil, Sungho
    • Journal of Korean Society on Water Environment
    • /
    • v.29 no.2
    • /
    • pp.232-238
    • /
    • 2013
  • Water temperature is key factor influencing growth and reproduction of fish and its increase give rise to various physiological changes including gene expression. Heat shock protein (Hsp), one of the molecular chaperones, is highly conserved throughout evolution and its expression is induced by various stressors such as temperature, oxidative, physical and chemical stresses. Here, we isolated partial cDNA clones encoding 70-kDa Hsp (Hsp70) and $\beta$-actin using reverse transcriptase-PCR (RT-PCR) from gut of Rhynchocypris kumgangensis, a Korean indigenous species and cold-water fish, and investigated expression profiles of Hsp70 under an increase of water temperature using $\beta$-actin as an internal control for RT-PCR. Cloned Hsp70 cDNA of R. kumgangensis showed homology to Ctenopharyngodon idella (96%), Hypophthalmichthys molitrix (96%), Danio rerio (93%) and Oncorhynchus mykiss (81%) Hsp70. Cloned $\beta$-actin cDNA of R. kumgangensis showed homology to D. rerio (98%), H. molitrix (97%), C. idella (97%) and O. mykiss (90%) $\beta$-actin. Both mRNA of Hsp70 and $\beta$-actin were expressed in gut, brain, and liver in R. kumgangensis. Futhermore, expression of Hsp70, in brain, was highly augmented by an increase of water temperature. These results suggest that Hsp70 mRNA expression level in brain can be used as a biological molecular marker to represent physiological stress against an increase of water temperature.