DOI QR코드

DOI QR Code

A Novel Heptapeptide that Promotes Cellular Activity and Inhibits Photoaging in Fibroblasts

섬유아세포에서 세포 활성 촉진 및 광노화 억제 효능을 보이는 신규 헵타펩타이드

  • Received : 2022.06.14
  • Accepted : 2022.06.29
  • Published : 2022.06.30

Abstract

In this study, we investigated the effects of heptapeptide on cellular activation and inhibition of cellular damage induced by photoaging condition in NIH3T3 fibroblasts. Cell proliferation and extracellular matrix (ECM) expression were induced by heptapeptide. The reduced cell viability under photoaging condition through ultraviolet A (UVA) irradiation was increased by heptapeptide. And UVA-induced apoptosis, matrix metalloproteinases-1 (MMP-1) expression, and reactive oxygen species (ROS) level were decreased by heptapeptide. In addition, the inhibition of transforming growth factor-β (TGF-β)/smad signaling under UVA irradiation which resulting in reduction of ECM expression was also recovered by heptapeptide. We also tested the effect of heptapeptide under another photoaging condition through heat shock, and pre-treatment of heptapeptide prevented the phosphorylation of mitogen-activated protein kinase (MAPK) and MMP-1 expression induced by heat shock. From these results, it has been shown that the heptapeptide has protective effects on fibroblasts through the up-regulation of cellular activity and through the decreasing of intracellular ROS level induced by UVA irradiation or heat shock. It is expected that the dermal protection effect of heptapeptide can be applied as a new cosmetic material in the future.

본 연구에서는 7 개의 아미노산으로 이루어진 헵타펩타이드의 섬유아세포 활성 증가 및 광노화 조건에서의 세포 손상 억제 효과를 확인하였다. 실험 결과 헵타펩타이드 처리 시 섬유아세포 증식 및 세포외기질(extracellular matrix, ECM) 구성 인자의 발현이 증가되었다. 그리고 자외선 A (ultraviolet A, UVA) 조사에 의해 유도된 광노화조건에서 감소된 세포 생존율이 헵타펩타이드에 의해 증가되었고, UVA 조사에 의해 유도된 세포 사멸, 기질금속단백질분해효소-1(matrix metalloproteinases-1, MMP-1) 발현 및 세포 내 활성산소종(reactive oxygen species, ROS) 수준이 헵타펩타이드에 의해 감소되었다. UVA 조사 시 나타나는 transforming growth factor-β (TGF-β)/smad 기전 억제와 그에 따른 ECM 구성 인자 발현 감소 또한 헵타펩타이드에 의해 회복되었다. 또 다른 광노화 유도 조건으로 heat shock을 주었고 헵타펩타이드를 전 처리 하였을 때 heat shock에 의한 mitogen-activated protein kinase (MAPK) 인산화 및 MMP-1 발현이 억제됨을 확인할 수 있었다. 이 결과를 종합해 볼 때, 본 연구의 헵타펩타이드는 섬유아세포의 활성을 촉진하며, 광노화 유도 모델로 사용된 UVA 조사 및 heat shock 조건에서도 세포 내 ROS 억제 효과를 보여 세포 손상에 대한 회복 및 보호 효과를 나타내는 것으로 보인다. 이러한 진피 보호 효과를 갖는 헵타펩타이드는 향 후 신규 화장품 소재로 응용될 수 있을 것으로 기대된다.

Keywords

References

  1. E. Low, G. Alimohammadiha, L.A. Smith, L.F. Costello, S.A. Przyborski, T. von Zglinicki, and S. Miwa, How good is the evidence that cellular senescence causes skin ageing?, Ageing Res. Rev., 71, 101456 (2021). https://doi.org/10.1016/j.arr.2021.101456
  2. R. Ganceviciene, A.I. Liakou, A. Theodoridis, E. Makrantonaki, and C.C. Zouboulis, Skin anti-aging strategies, Dermatoendocrinol., 4(3), 308 (2012). https://doi.org/10.4161/derm.22804
  3. M. El-Domyati, S. Attia, F. Saleh, D. Brown, D.E. Birk, F. Gasparro, H. Ahmad, and J. Uitto, Intrinsic aging vs. photoaging: a comparative histopathological, immunohistochemical, and ultrastructural study of skin, Exp. Dermatol., 11(5), 398 (2002). https://doi.org/10.1034/j.1600-0625.2002.110502.x
  4. E. Makrantonaki and C. C. Zouboulis, Characteristics and pathomechanisms of endogenously aged skin, Dermatology, 214(4), 352 (2007). https://doi.org/10.1159/000100890
  5. C. M. Lapiere, The ageing dermis: the main cause for the appearance of 'old' skin, Br. J. Dermatol., 122(Suppl 35), 5 (1990). https://doi.org/10.1111/j.1365-2133.1990.tb16119.x
  6. A. C. Mora Huertas, C. E. Schmelzer, W. Hoehenwarter, F. Heyroth, and A. Heinz, Molecular-level insights into aging processes of skin elastin, Biochimie., 128-129, 163 (2016). https://doi.org/10.1016/j.biochi.2016.08.010
  7. T. Quan, Z. Qin, W. Xia, Y. Shao, J. J. Voorhees, and G.J. Fisher, Matrix-degrading metalloproteinases in photoaging, J. Investig. Dermatol. Symp. Proc., 14(1), 20 (2009). https://doi.org/10.1038/jidsymp.2009.8
  8. J. Varani, M. K. Dame, L. Rittie, S. E. Fligiel, S. Kang, G. J. Fisher, and J.J. Voorhees, Decreased collagen production in chronologically aged skin: roles of age-dependent alteration in fibroblast function and defective mechanical stimulation, Am. J. Pathol., 168(6), 1861 (2006). https://doi.org/10.2353/ajpath.2006.051302
  9. T. Quan, Y. Shao, T. He, J. J. Voorhees, and G. J. Fisher, Reduced expression of connective tissue growth factor (CTGF/CCN2) mediates collagen loss in chronologically aged human skin, J. Invest. Dermatol., 130(2), 415 (2010). https://doi.org/10.1038/jid.2009.224
  10. J. Varani, D. Spearman, P. Perone, S. E. Fligiel, S. C. Datta, Z. Q. Wang, Y. Shao, S. Kang, G.J. Fisher, and J. J. Voorhees, Inhibition of type I procollagen synthesis by damaged collagen in photoaged skin and by collagenase-degraded collagen in vitro, Am. J. Pathol., 158(3), 931 (2001). https://doi.org/10.1016/s0002-9440(10)64040-0
  11. G. J. Fisher, Z. Q. Wang, S. C. Datta, J. Varani, S. Kang, and J. J. Voorhees. Pathophysiology of premature skin aging induced by ultraviolet light, N. Engl. J. Med., 337(20), 1419 (1997). https://doi.org/10.1056/NEJM199711133372003
  12. L. Rittie and G. J. Fisher, UV-light-induced signal cascades and skin aging, Ageing Res. Rev., 1(4), 705 (2002). https://doi.org/10.1016/S1568-1637(02)00024-7
  13. A. Kammeyer and R. M. Luiten, Oxidation events and skin aging, Ageing Res. Rev., 21, 16 (2015). https://doi.org/10.1016/j.arr.2015.01.001
  14. J. W. Shin, S. H. Kwon, J. Y. Choi, J. I. Na, C. H. Huh, H. R. Choi, and K. C. Park, Molecular mechanisms of dermal aging and antiaging approaches, Int. J. Mol. Sci., 20(9), 2126 (2019). https://doi.org/10.3390/ijms20092126
  15. T. Quan, T. He, J. J. Voorhees, and G. J. Fisher, Ultraviolet irradiation induces Smad7 via induction of transcription factor AP-1 in human skin fibroblasts, J. Biol. Chem., 280(9), 8079 (2005). https://doi.org/10.1074/jbc.M409647200
  16. K. J. Gromkowska-Kepka, A. Puscion-Jakubik, R. Markiewicz-Zukowska, and K. Socha, The impact of ultraviolet radiation on skin photoaging - review of in vitro studies, J. Cosmet. Dermatol., 20(11), 3427 (2021). https://doi.org/10.1111/jocd.14033
  17. N. Bigot, G. Beauchef, M. Hervieu, T. Oddos, M. Demoor, K. Boumediene, and P. Galera, NF-κB accumulation associated with COL1A1 transactivators defects during chronological aging represses type I collagen expression through a -112/-61-bp region of the COL1A1 promoter in human skin fibroblasts, J. Invest. Dermatol., 132(10), 2360 (2012). https://doi.org/10.1038/jid.2012.164
  18. K. Tanaka, K. Asamitsu, H. Uranishi, A. Iddamalgoda, K. Ito, H. Kojima, and T. Okamoto, Protecting skin photoaging by NF-kappaB inhibitor, Curr. Drug Metab., 11(5), 431 (2010). https://doi.org/10.2174/138920010791526051
  19. Y. J. Choi, K. M. Moon, K. W. Chung, J. W. Jeong, D. Park, D. H. Kim, B. P. Yu, and H. Y. Chung, The underlying mechanism of proinflammatory NF-κB activation by the mTORC2/Akt/IKKα pathway during skin aging, Oncotarget. 7(33), 52685 (2016). https://doi.org/10.18632/oncotarget.10943
  20. H. J. Kim, N. J. Bogdan, L. J. D'Agostaro, L. I. Gold, and G. F. Bryce, Effect of topical retinoic acids on the levels of collagen mRNA during the repair of UVB-induced dermal damage in the hairless mouse and the possible role of TGF-beta as a mediator, J. Invest. Dermatol., 98(3), 359 (1992). https://doi.org/10.1111/1523-1747.ep12499805
  21. L. H. Kligman, C. H. Duo, and A. M. Kligman, Topical retinoic acid enhances the repair of ultraviolet damaged dermal connective tissue, Connect. Tissue Res., 12(2), 139 (1984). https://doi.org/10.3109/03008208408992779
  22. J. J. Leyden, Treatment of photodamaged skin with topical tretinoin: an update, Plast. Reconstr. Surg., 102(5), 1667 (1998). https://doi.org/10.1097/00006534-199810000-00053
  23. C. E. Griffiths, A. N. Russman, G. Majmudar, R. S. Singer, T. A. Hamilton, and J. J. Voorhees, Restoration of collagen formation in photodamaged human skin by tretinoin (retinoic acid), N. Engl. J. Med., 329(8), 530 (1993). https://doi.org/10.1056/NEJM199308193290803
  24. R. M. Colven and S. R. Pinnell, Topical vitamin C in aging, Clin. Dermatol., 14(2), 227 (1996). https://doi.org/10.1016/0738-081X(95)00158-C
  25. P . C. Chiu, C. C. Chan, H. M. Lin, and H. C. Chiu, The clinical anti-aging effects of topical kinetin and niacinamide in Asians: a randomized, double-blind, placebo-controlled, split-face comparative trial, J. Cosmet. Dermatol., 6(4), 243 (2007). https://doi.org/10.1111/j.1473-2165.2007.00342.x
  26. D. L. Bissett, K. Miyamoto, P. Sun, J. Li, and C. A. Berge, Topical niacinamide reduces yellowing, wrinkling, red blotchiness, and hyperpigmented spots in aging facial skin, Int. J. Cosmet. Sci., 26(5), 231 (2004). https://doi.org/10.1111/j.1467-2494.2004.00228.x
  27. C. M. Ditre, T. D. Griffin, G. F. Murphy, H. Sueki, B. Telegan, W. C. Johnson, R. J. Yu, and E. J. Van Scott, Effects of alpha-hydroxy acids on photoaged skin: a pilot clinical, histologic, and ultrastructural study, J. Am. Acad. Dermatol., 34(2 Pt 1), 187 (1996). https://doi.org/10.1016/S0190-9622(96)80110-1
  28. P. K. Thibault, J. Wlodarczyk, and A. Wenck, A double-blind randomized clinical trial on the effectiveness of a daily glycolic acid 5% formulation in the treatment of photoaging, Dermatol. Surg., 24(5), 573 (1998). https://doi.org/10.1111/j.1524-4725.1998.tb04209.x
  29. P. Ledwon, F. Errante, A. M. Papini, P. Rovero, and R. Latajka, Peptides as active ingredients: A challenge for cosmeceutical industry, Chem. Biodivers., 18(2), e2000833 (2021).
  30. K. Sato, M. Viswanathan, R. B. Kent, and C. R. Wood, Therapeutic peptides: technological advances driving peptides into development, Curr. Opin. Biotechnol., 17(6), 638 (2006). https://doi.org/10.1016/j.copbio.2006.10.002
  31. H. Husein E. Hadmed and R. F. Castillo, Cosmeceuticals: peptides, proteins, and growth factors, J. Cosmet. Dermatol., 15(4), 514 (2016). https://doi.org/10.1111/jocd.12229
  32. D. I. S. P. Resende, M. S. Ferreira, J. M. Sousa-Lobo, E. Sousa, and I. F. Almeida, Usage of synthetic peptides in cosmetics for sensitive skin, Pharmaceuticals(Basel), 14(8), 702 (2021). https://doi.org/10.3390/ph14080702
  33. L. Zhang and T. J. Falla, Cosmeceuticals and peptides, Clin. Dermatol., 27(5), 485 (2009). https://doi.org/10.1016/j.clindermatol.2009.05.013
  34. Y. L. Choi, E. J. P ark, E. Kim, D. H. Na, and Y. H. Shin, Dermal stability and in vitro skin permeation of collagen pentapeptides (KTTKS and palmitoyl-KTTKS), Biomol. Ther (Seoul), 22(4), 321 (2014). https://doi.org/10.4062/biomolther.2014.053
  35. L. Pickart, J. M. Vasquez-Soltero, and A. Margolina, GHK Peptide as a Natural Modulator of Multiple Cellular Pathways in Skin Regeneration, Biomed. Res. Int., 2015, 648108 (2015).
  36. C. Blanes-Mira, J. Clemente, G. Jodas, A. Gil, G. Fernandez-Ballester, B. Ponsati, L. Gutierrez, E. Perez-Paya, and A. Ferrer-Montiel, A synthetic hexapeptide (Argireline) with antiwrinkle activity, Int. J. Cosmet. Sci., 24(5), 303 (2002). https://doi.org/10.1046/j.1467-2494.2002.00153.x
  37. B. Y. Reddy, T. Jow, and B. M. Hantash, Bioactive oligopeptides in dermatology: Part II, Exp. Dermatol., 21(8), 569 (2012). https://doi.org/10.1111/j.1600-0625.2012.01527.x
  38. F. Errante, P. Ledwon, R. Latajka, P. Rovero, and A. M. Papini, Cosmeceutical Peptides in the Framework of Sustainable Wellness Economy, Front. Chem., 8, 572923 (2020). https://doi.org/10.3389/fchem.2020.572923
  39. M. S. Ferreira, M. C. Magalhaes, J. M. Sousa-Lobo, and I. F. Almeida, Trending Anti-Aging Peptides, Cosmetics, 7(4), 91 (2020). https://doi.org/10.3390/cosmetics7040091
  40. G. Park and M.S. Oh, Acceleration of heat shock-induced collagen breakdown in human dermal fibroblasts with knockdown of NF-E2-related factor 2, BMB Rep., 48(8), 467 (2015). https://doi.org/10.5483/BMBRep.2015.48.8.215
  41. R. Z. Lin, Z. W. Hu, J. H. Chin, and B. B. Hoffman, Heat shock activates c-Src tyrosine kinases and phosphatidylinositol 3-kinase in NIH3T3 fibroblasts, J. Biol. Chem., 272(49), 31196 (1997). https://doi.org/10.1074/jbc.272.49.31196
  42. C. H. Park, M. J. Lee, J. Ahn, S. Kim, H. H. Kim, K. H. Kim, H. C. Eun, and J. H. Chung, Heat shock-induced matrix metalloproteinase (MMP)-1 and MMP-3 are mediated through ERK and JNK activation and via an autocrine interleukin-6 loop, J. Invest. Dermatol., 123(6), 1012 (2004). https://doi.org/10.1111/j.0022-202X.2004.23487.x
  43. P . Xu, Y. Zheng, X. Zhu, S. Li, and C. Zhou, L-lysine and L-arginine inhibit the oxidation of lipids and proteins of emulsion sausage by chelating iron ion and scavenging radical, Asian-Australas J. Anim. Sci., 31(6), 905 (2018). https://doi.org/10.5713/ajas.17.0617
  44. R. H. Boger, S. M. Bode-Boger, A. Mugge, S. Kienke, R. Brandes, A. Dwenger, and J.C. Frolich, Supplementation of hypercholesterolaemic rabbits with L-arginine reduces the vascular release of superoxide anions and restores NO production, Atherosclerosis. 117(2), 273 (1995). https://doi.org/10.1016/0021-9150(95)05582-H