• Title/Summary/Keyword: Heat shock

Search Result 1,035, Processing Time 0.032 seconds

Overexpression of the Small Heat Shock Protein, PtsHSP19.3 from Marine Red Algae, Pyropia tenera (Bangiales, Rhodophyta) Enhances Abiotic Stress Tolerance in Chlamydomonas

  • Jin, Yujin;Yang, Sungwhan;Im, Sungoh;Jeong, Won-Joong;Park, EunJeong;Choi, Dong-Woog
    • Journal of Plant Biotechnology
    • /
    • v.44 no.3
    • /
    • pp.287-295
    • /
    • 2017
  • Water temperature is one of the major factors that impacts the growth and life cycle of Pyropia tenera, one of the most valuable and cultivated marine red algae belonging to Bangiales (Rhodophytes). We analyzed transcriptome from gametophyte of P. tenera under normal and high temperature conditions, and identified four small heat shock proteins (sHSPs). They have no significant amino acid sequence homology with known proteins in public databases except PhsHSP22 from Pyropia haitanensis. PtsHSP19.3 gene responded to high temperature but slightly or not to desiccation, freezing or high salt condition. When the PtsHSP19.3 gene was overexpressed in Chlamydomonas reinhardtii, transformed Chlamydomonas lines revealed much higher growth rate than that of control cells under heat stress condition. Transformed cells also grew well in those of the control cell onto the medium containing high salt or $H_2O_2$. When the PtsHSP19.3 was fused to GFP and introduced into tobacco protoplast, fluorescence was detected at several spots. Results indicate that PtsHSP19.3 may form super-molecular assembles and be involved in tolerance to heat stress.

The Heat Shock Protein 27 (Hsp27) Operates Predominantly by Blocking the Mitochondrial-Independent/Extrinsic Pathway of Cellular Apoptosis

  • Tan, Cheau Yih;Ban, Hongseok;Kim, Young-Hee;Lee, Sang-Kyung
    • Molecules and Cells
    • /
    • v.27 no.5
    • /
    • pp.533-538
    • /
    • 2009
  • Heat shock protein 27 (Hsp27) is a molecular chaperone protein which regulates cell apoptosis by interacting directly with the caspase activation components in the apoptotic pathways. With the assistance of the Tat protein transduction domain we directly delivered the Hsp27 into the myocardial cell line, H9c2 and demonstrate that this protein can reverse hypoxia-induced apoptosis of cells. In order to characterize the contribution of Hsp27 in blocking the two major apoptotic pathways operational within cells, we exposed H9c2 cells to staurosporine and cobalt chloride, agents that induce mitochondria-dependent (intrinsic) and -independent (extrinsic) pathways of apoptosis in cells respectively. The Tat-Hsp27 fusion protein showed a greater propensity to inhibit the effect induced by the cobalt chloride treatment. These data suggest that the Hsp27 predominantly exerts its protective effect by interfering with the components of the extrinsic pathway of apoptosis.

Effects of Protease Treatment and Animal Behavior on the Dissociative Culture of Aplysia Neurons

  • Lee, Nuribalhae;Rim, Young-Soo;Kaang, Bong-Kiun
    • Animal cells and systems
    • /
    • v.13 no.3
    • /
    • pp.267-274
    • /
    • 2009
  • The dissociative culture technique of Aplysia neuron is one of the key methods that have been used for studies of cellular and molecular mechanisms of neuronal functioning. However, despite the advantages this method offers as an experimental model, its technical efficiency has had room for improvement. In this study, we examined certain putative factors that might affect the culture quality. The effects of neuronal damage induced by physical injuries, heat shock, and surface protein degradation were evaluated along with the correlation between the culture quality and animal behavior. As a result, we found that physical injury can be a critical factor that affects culture quality, whereas the heat shock and surface protein degradation had negligible effect on it. In addition, we discovered that siphon retraction time was not a good measurement for healthy neurons. Based on these findings, we suggest here an improved method in which the degree of physical injury is reduced by means of multiple protease treatment.

Numerical study on attenuation and distortion of compression wave propagation into a straight tube (직관내를 전파하는 압축파의 감쇠와 변형에 관한 수치해석적 연구)

  • Kim, Hui-Dong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.7
    • /
    • pp.2315-2325
    • /
    • 1996
  • A compression wave is attenuated or distorted as it propagates in a tube. The present study investigated the propagation characteristics of the compression waves which are generated by a train in a high-speed railway tunnel. A Total Variation Diminishing (TVD) difference scheme was applied to one-dimensional, unsteady viscous compressible flow. The numerical calculation involved the effects of wall friction, heat transfer and energy loss due to the friction heat in the boundary layer behind the propagating compression wave, and compared with the measurement results of a shock tube and a real tunnel. The present results show that attenuation of the compression wave in turbulent boundary layer is stronger than in laminar boundary layer, but nonlinear effect of the compression wave is greater in the laminar boundary layer. The energy loss due to the frictional heat had not influence on attenuation and distortion of the propagating compression waves.

Identification of mono- or poly-specific monoclonal antibody to Porphyromonas gingivalis heat-shock protein 60

  • Choi, Jeom-Il;Lee, Sang-Yull;Kim, Koan-Hoi;Choi, Bong-Kyu;Kim, Myung-Jin
    • Journal of Periodontal and Implant Science
    • /
    • v.41 no.2
    • /
    • pp.54-59
    • /
    • 2011
  • Purpose: The aim of this study was to define the immunoreactive specificity of Porphyromonas gingivalis (P. gingivalis) heat shock protein (HSP) 60 in periodontitis and atherosclerosis. Methods: In an attempt to define the cross-reactive bacterial heat-shock protein with human self-antigen at molecular level, we have introduced a novel strategy for cloning hybridoma producing anti-P. gingivalis HSP 60 which is polyreactive to bacterial HSPs or to the human homolog. Results: Five cross-reactive clones were obtained which recognized the #19 peptide (TLVVNRLRGSLKICAVKAPG) among 37 synthetic peptides (20-mer, 5 amino acids overlapping) spanning the whole molecule of P. gingivalis HSP 60. We have also established three anti-P. gingivalis HSP 60 monoclonal antibodies demonstrating mono-specificity. These clones recognized the #29 peptide (TVPGGGTTYIRAIAALEGLK). Conclusions: Peptide #19 and #29 of P. gingivalis HSP 60 might be important immunoreactive epitopes in the immuno-pathogenic mechanism of bacterial antigen-triggered autoimmune diseases.

Heat Shock Proteins as Molecular Chaperons in Neuropsychiatry (열충격 단백질의 신경정신의학적 의의와 중요성)

  • Oh, Dong-Hoon;Yang, Byung-Hwan;Choi, Joonho
    • Korean Journal of Biological Psychiatry
    • /
    • v.14 no.4
    • /
    • pp.221-231
    • /
    • 2007
  • Recent researches have shown that important cellular-based autoprotective mechanisms are mediated by heat-shock proteins(HSPs), also called 'molecular chaperones'. HSPs as molecular chaperones are the primary cellular defense mechanism against damage to the proteome, initiating refolding of denatured proteins and regulating degradation after severe protein damage. HSPs also modulate multiple events within apoptotic pathways to help sustain cell survival following damaging stimuli. HSPs are induced by almost every type of stresses including physical and psychological stresses. Our nervous system in the brain are more vulnerable to stress and damage than any other tissues due to HSPs insufficiency. The normal function of HSPs is a key factor for endogenous stress adaptation of neural tissues. HSPs play an important role in the process of neurodevelopment, neurodegeneration, and neuroendocrine regulation. The altered function of HSPs would be associated with the development of several neuropsychiatric disorders. Therefore, an understanding of HSPs activities could help to improve autoprotective mechanism of our neural system. This paper will review the literature related to the significance of HSPs in neuropsychiatric field.

  • PDF

Hsp20, a Small Heat Shock Protein of Deinococcus radiodurans, Confers Tolerance to Hydrogen Peroxide in Escherichia coli

  • Singh, Harinder;Appukuttan, Deepti;Lim, Sangyong
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.8
    • /
    • pp.1118-1122
    • /
    • 2014
  • The present study shows that DR1114 (Hsp20), a small heat shock protein of the radiation-resistant bacterium Deinococcus radiodurans, enhances tolerance to hydrogen peroxide ($H_2O_2$) stress when expressed in Escherichia coli. A protein profile comparison showed that E. coli cells overexpressing D. radiodurans Hsp20 (EC-pHsp20) activated the redox state proteins, thus maintaining redox homeostasis. The cells also showed increased expression of pseudouridine (psi) synthases, which are important to the stability and proper functioning of structural RNA molecules. We found that the D. radiodurans mutant strain, which lacks a psi synthase (DR0896), was more sensitive to $H_2O_2$ stress than wild type. These suggest that an increased expression of proteins involved in the control of redox state homeostasis along with more stable ribosomal function may explain the improved tolerance of EC-pHsp20 to $H_2O_2$ stress.

Upregulation of Heat Shock Proteins in the Kidney in Hypertension

  • Lee, Geon;Oh, Yoon-Wha;Lee, Jong-Un
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.8 no.3
    • /
    • pp.147-151
    • /
    • 2004
  • The present study was undertaken to determine the regulation of heat shock proteins (HSP) in the kidney in hypertension. Two-kidney, one clip (2K1C) or deoxycorticosterone acetate (DOCA)-salt hypertension was induced in male Sprague-Dawley rats. At weeks 1 and 4 after inducing the hypertension, the expression of HSP70, HSP32 and HSP25 was determined in the kidney by Western blot analysis. In 2K1C hypertension, the expression of HSP70, HSP32 and HSP25 was increased in the clipped kidney at both weeks 1 and 4. However, in the contralateral kidney, their expression was not significantly altered at week 1, but increased at week 4. In DOCA-salt hypertension, the expression of HSP remained unaltered in the remnant kidney at week 1, but significantly increased at week 4. These results indicate that HSP are differentially regulated in the kidney according to the duration and the model of hypertension.

Proteome Analysis of Pigs Fed with Tissue Culture Medium Waste after Harvest of Korean Wild Ginseng (산삼배양액을 급여한 돼지에서 근육의 프로테옴 분석)

  • Seol, Jae-Won;Chae, Joon-Seok;Kang, Hyung-Sub;Kang, Chun-Seong;Ihn, Dong-Chul;Park, Sang-Youel
    • Journal of Veterinary Clinics
    • /
    • v.28 no.1
    • /
    • pp.75-80
    • /
    • 2011
  • Proteomics is a useful approach to know protein expression, post-translational modification and protein function. We investigated the protein expression pattern and identity in pigs fed with the tissue culture medium waste after harvest of Korean wild ginseng (TCM-KWG) (Panax ginseng). Two groups (n = 30/group) of pigs were administered with 0 (control) and 16 ml/L (treatment) TCM-KWG through drinking water. After 4 weeks, we examined the protein expression pattern of longissimus dorsi muscle by Two-dimensional electrophoresis analysis. TCM-KWG treatment significantly increased two spot's density, and markedly reduced one spot's density in the muscles. We identified 3 proteins (heat shock protein 90-alpha, myosin binding protein and cofilin 2) by the ESI-MS/MS (Q-TOF2, Micromass). These results demonstrate that TCM-KWG treatment may play a protection role against physiological stress in pigs, like as increased heat shock protein 90-alpha.