• Title/Summary/Keyword: Heat retention

Search Result 255, Processing Time 0.034 seconds

A Study on the condensate Retention at Horizontal Integral-Fin tubes (낮은 핀을 가진 수평관의 응축액 억류에 관한 연구)

  • 한규일;조동현
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.8 no.1
    • /
    • pp.151-165
    • /
    • 1996
  • Relation between condensate retention and heat transfer performance is studied for condensation of CFC-11 on horizontal integral-fin tubes. Eight tubes with trapezoidally shaped integral fin density from 738fpm to 1654fpm and 10, 30 grooves are tested. The liquid retention angles are measured by the height gauge, and each tube is tested under static(non-condensing) condition (CFC-11, water) and under dynamic(condensing) condition (CFC-11). The analytical model predicts the amount of liquid retention on a horizontal integral-fin tubes within+10 percent over most of the data. Average retention angle increases as both surface tension-to-density ratio($\sigma/\rho$) and fin density(fpm) increase, The tube having a fin density of 1299~1654fpm has the best heat transfer performance. The amount of surface flooding must keep below of 40 percent for best heat transfer performance at condensation. The tube having low number of fin density must be used for fluids having high values of $\sigma/\rho$(water, (TEX)$NH_3$, ect.) and the tube having high number of fin density must be used for the fluid having low values of $\sigma/\rho$(R-11, R-22, etc.)

  • PDF

EVALUATION OF HEAT-FLUX DISTRIBUTION AT THE INNER AND OUTER REACTOR VESSEL WALLS UNDER THE IN-VESSEL RETENTION THROUGH EXTERNAL REACTOR VESSEL COOLING CONDITION

  • JUNG, JAEHOON;AN, SANG MO;HA, KWANG SOON;KIM, HWAN YEOL
    • Nuclear Engineering and Technology
    • /
    • v.47 no.1
    • /
    • pp.66-73
    • /
    • 2015
  • Background: A numerical simulation was carried out to investigate the difference between internal and external heat-flux distributions at the reactor vessel wall under in-vessel retention through external reactor vessel cooling (IVR-ERVC). Methods: Total loss of feed water, station blackout, and large break loss of coolant accidents were selected as the severe accident scenarios, and a transient analysis using the element-birth-and-death technique was conducted to reflect the vessel erosion (vessel wall thickness change) effect. Results: It was found that the maximum heat flux at the focusing region was decreased at least 10% when considering the two-dimensional heat conduction at the reactor vessel wall. Conclusion: The results show that a higher thermal margin for the IVR-ERVC strategy can be achieved in the focusing region. In addition, sensitivity studies revealed that the heat flux and reactor vessel thickness are dominantly affected by the molten corium pool formation according to the accident scenario.

Nutritional Retention Factor of 1+ Quality Grade Hanwoo Beef Using Different Cooking Methods (1+등급 한우의 부위별 조리방법에 따른 영양소 잔존율)

  • Kim, Hong-Gyun;Lee, Kun-Jong;Kim, Sung-Min;Chung, Hea-Jung
    • Food Science of Animal Resources
    • /
    • v.30 no.6
    • /
    • pp.1024-1030
    • /
    • 2010
  • The focus of the study was to maximize the output data for Korean cuisine. This study evaluated the nutritional retention factor for different cuts of Korean beef (Hanwoo beef) subjected to various cooking methods. Five cuts (short rib, sirloin, chuck roll, tenderloin, and fore shank) of Korean Hanwoo beef were prepared and used in this experiment. Two different cooking methods (dry-heat cooking and moisture-heat cooking) were applied to each cut. The sodium contents of dry-heat cooked short rib (86.44), sirloin (76.81), tenderloin (86.65), and fore shank (85.89) decreased. Potassium contents of dryheat cooked sirloin (94.99), chuck roll (89.19), and fore shank (92.66) decreased. Calcium contents of dry-heat cooked sirloin (61.49), chuck roll (73.97), and fore shank (91.46) decreased. Iron contents of dry-heat cooked chuck roll (79.71), and tenderloin (90.79) decreased. Phosphorus contents of dry-heat cooked sirloin (87.87), and tenderloin (99.88) decreased. Mineral contents of all cuts cooked by moisture-heat decreased. Finally, the nutritional retention factor represents output data of each cooking method with yield % of each item.

Effects of Cooking Method on the Vitamin and Mineral Contents in Frequently Used Vegetables (조리 방법이 상용채소의 비타민 및 무기질 함량에 미치는 영향 -시금치, 양배추, 콩나물, 당근을 중심으로 -)

  • Chung, Hae Kyung;Yoon, Kyung-soo;Woo, Nariyah
    • Korean journal of food and cookery science
    • /
    • v.32 no.3
    • /
    • pp.270-278
    • /
    • 2016
  • Purpose: We have investigated for the purpose of studying change of vitamins and minerals in frequently used vegetables by low moisture cooking method. Methods: Vitamin B complex, vitamin C and mineral (Mg, Ca, K, Zn, Fe) contents are analyzed in vegetables such as spinach, cabbage, bean sprouts and carrot which are heat-treated with degrees of water contents. Low moisture cooking method represents heat-treated vegetable (LM experiment group) with 25 wt.% water content for the vegetable weight while general blanching method includes heat-treated vegetable (GB experiment group) with 500-1,000 wt.% water content for the vegetable weight. Results: Retention rate of vitamin B1 (thiamin) in the LM experiment group is relatively high (87.50-95.68%) and dosen't show considerable differences from raw vegetables. On the other hand, the retention rate of vitamin $B_1$ in GB group's cabbage and spinach dramatically decreased to 19.46-25.00%. Retention rate of vitamin B2 (riboflavin) is sustained stably in LM experiment group (75.00-87.50% in bean sprouts, cabbage and spinach), represents that low moisture cooking method has relatively higher contents in vitamin $B_2$. The LM experiment group has 71.43-85.71% on retention rate of niacin while the GB group shows relatively lower niacin (57.14-64.58%), represents conflicting results from the general idea that vitamin $B_3$ is relatively stable in heat treatment and blanching. Retention rate of pantothenic acid is considerably higher in both LM and GB experiment group, indicates vitamin pantothenic acid is relatively stable in the various cooking condition such as amount of water and heat treatment. In the experiment under various water contents, vitamin C is not detected in both bean sprouts and carrots, while the contents in cabbage and spinach are 19.87 mg/100 g and 26.65 mg/100 g respectively. In the same experiment, the retention rate of Vitamin C in LM experiment group (91.65%, 92.23%) is considerably higher than GB group (58.08%, 61.61%). Retention rate of Mg, K, Fe in the LM experiment group is relatively higher than GB group. Conclusion: Resultingly, the observations suggests that minimum water quantity and minimum heat treatment processes should be established in cooking vegetables which have soluble vitamins and minerals.

Mass Transfer Experiments for the Heat Load During In-Vessel Retention of Core Melt

  • Park, Hae-Kyun;Chung, Bum-Jin
    • Nuclear Engineering and Technology
    • /
    • v.48 no.4
    • /
    • pp.906-914
    • /
    • 2016
  • We investigated the heat load imposed on the lower head of a reactor vessel by the natural convection of the oxide pool in a severe accident. Mass transfer experiments using a $CuSO_4-H_2SO_4$ electroplating system were performed based on the analogy between heat and mass transfer. The $Ra^{\prime}_H$ of $10^{14}$ order was achieved with a facility height of only 0.1 m. Three different volumetric heat sources were compared; two had identical configurations to those previously reported, and the other was designed by the authors. The measured Nu's of the lower head were about 30% lower than those previously reported. The measured angular heat flux ratios were similar to those reported in existing studies except for the peaks appearing near the top. The volumetric heat sources did not affect the Nu of the lower head but affected the Nu of the top plate by obstructing the rising flow from the bottom.

Effects of Saligenin Treatment on Acoustical Properties and Adsorption of Soundboard for Traditional Musical Instruments (전통악기 음향판용재의 살리게닌 처리가 음향성 및 흡습성에 미치는 영향)

  • Jung, Hee-Suk;Yoo, Tae-Kyung
    • Journal of the Korean Wood Science and Technology
    • /
    • v.27 no.3
    • /
    • pp.7-16
    • /
    • 1999
  • This research was carried out to compare structure, equilibrium moisture content(EMC), adsorption and acoustical properties between 4 retention levels of saligenin(o-hydroxybenzyl alcohol) treated, heat-treated and untreated chestnut(Castanea crenata S. et Z.) and paulownia(Paulownia spp.) woods. The cell structures of untreated wood and heat-treated wood were not different but the cell wall of saligenin treated wood was thicker than that of untreated wood for both species. EMC of untreated wood was the highest, next was that of heat-treated wood, and that of saligenin treated wood was the lowest, and among saligenin treated woods, EMC was decreased as retention level increased for both species. Adsorption curves were parabolically increased. Acoustical properties of saligenin treated wood were most improved, and the next were those of heat-treated wood. Comprehensive acoustical property was improved at retention level 20% and 30% for chestnut wood, and at retention level 80% for paulownia wood.

  • PDF

Enhancement of Downward-Facing Saturated Boiling Heat Transfer by the Cold Spray Technique

  • Sohag, Faruk A.;Beck, Faith R.;Mohanta, Lokanath;Cheung, Fan-Bill;Segall, Albert E.;Eden, Timothy J.;Potter, John K.
    • Nuclear Engineering and Technology
    • /
    • v.49 no.1
    • /
    • pp.124-133
    • /
    • 2017
  • In-vessel retention by passive external reactor vessel cooling under severe accident conditions is a viable approach for retention of radioactive core melt within the reactor vessel. In this study, a new and versatile coating technique known as "cold spray" that can readily be applied to operating and advanced reactors was developed to form a microporous coating on the outer surface of a simulated reactor lower head. Quenching experiments were performed under simulated in-vessel retention by passive external reactor vessel cooling conditions using test vessels with and without cold spray coatings. Quantitative measurements show that for all angular locations on the vessel outer surface, the local critical heat flux (CHF) values for the coated vessel were consistently higher than the corresponding CHF values for the bare vessel. However, it was also observed for both coated and uncoated surfaces that the local rate of boiling and local CHF limit vary appreciably along the outer surface of the test vessel. Nonetheless, results of this intriguing study clearly show that the use of cold spray coatings could enhance the local CHF limit for downward-facing boiling by > 88%.

Estimation of the Temporal and Spatial Distribution of Anthropogenic Heat in Daegu (대구지역 인공열의 시공간적 분포 추정에 관한 연구)

  • 안지숙;김해동;홍정혜
    • Journal of Environmental Science International
    • /
    • v.11 no.10
    • /
    • pp.1045-1054
    • /
    • 2002
  • Urban atmospheric conditions are usually settled as warmer, drier and dirtier than those of rural counterpart owing to reduction of green space and water space area heat retention in surfaces such as concrete and asphalt, and abundant fuel consumption. The characteristics of urban climate has become generally known as urban heat island. The purpose of this study is to investigate the temporal and spatial distribution of the heat emission from human activity, which is a main factor causing urban heat island. In this study, the anthropogenic heat fluxes emitted from vehicles and constructions are estimated by computational grid mesh which is divided by 1km $\times$ 1km. The anthropogenic heat flux by grid mesh can be applied to a numerical simulation model of the local circulation model. The constructions are classified into 9 energy-consumption types - hospital, hotel, office, department store, commercial store, school, factory, detached house and flat. The vehicles classified into 4 energy-consumption types - car, taxi, truck and bus. The seasonal mean of anthropogenic heat flux around central Daegu exceeded $50 W/m^2$ in winter. The annual mean anthropogenic heat flux exceeded $20 W/m^2$. The values are nearly equivalent to the anthropogenic heat flux in the suburbs of Tokyo, Japan.

Effect of Heat Treatment on Properties of Tungsten Embolization Coils (텅스텐 색전코일의 특성에 미치는 열처리 효과)

  • Son, Ung-Hui;Hong, Sun-Hyeong;Sin, Gyeong-Min;Lee, Yun-Sin;Park, Jae-Hyeong
    • Journal of Biomedical Engineering Research
    • /
    • v.19 no.4
    • /
    • pp.333-339
    • /
    • 1998
  • The effect of heat treatment conditions on the properties of tungsten(W) embolization coils has been evaluated. The W embolization coils were fabricated by coiling the primary W coil with a diameter of 30.mm on a alumina rod mandrel with a diameter of 2.92mm. The secondary coils were then heat treated at 475$^{\circ}C$and 600$^{\circ}C$ for various heat treatment time ranging from 5 minutes to 36hours. The pitch distance, diameter and shape retention capability of the W embolization coils were characterized after the heat treatment. The pitch distance of the W embolization coils increased with the heat treatment time. The diameter of W emboliazation coils decreased continuously with heat treatment time. The shape retention capability of the W embolization coils increased with the heat treatment time due to an increase in elasticity by formation of tungsten oxide film on W coil surface during the heat treatment. The heat treatment condition of W embolization Col at 600$^{\circ}C$ for 20 minute was considered desirable based on the optimization of the shape retention capability, pitch distance and secondary coil diameter after heat treatment.

  • PDF

The Analysis of Mesoscale Circulations Characteristics Caused by the Evaporation-Efficiency of Water Retention Pavement (보수성 도로 포장재의 증발효율 변화에 의한 중규모 순환장 특성 분석)

  • Kim, In-Su;Lee, Soon-Hwan;Kim, Hae-Dong;Suh, Young-Chan
    • Journal of the Korean earth science society
    • /
    • v.30 no.6
    • /
    • pp.709-720
    • /
    • 2009
  • Field observation and numerical experiments were conducted to understand the impact of water retention pavement on the surface heat budget and on the regional circulation. The numerical model applied in this study is the atmospheric dynamic model Local Circulation Model (LCM) with two dimensional grid system, and a field observation was carried out under the clear sky and calm conditions of the weather on 19 July 2007. In the field observation, the maximum value of surface temperature on pavement covered with water retention material reached the $41.2^{\circ}C$ at 1430 LST and the values was lower for $16.1^{\circ}C$ than that of asphalt without the material. The Case BET03 assumed to be 0.3 for the surface evaporation efficiency was in good agreement with the observation and its sensible and latent heat fluxes were numerically estimated to be 229 and 227 $W/m^2$, respectively. Results of the numerical experiments demonstrated that the water retention pavement tends to induce the increase of latent heat flux associated with the lower surface temperature and mixing height during the daytime. Discontinuity of latent heat caused by the water retention pavement also tends to promote the development of mesoscale circulation called as land-land breeze or country breeze.