References
- J.M. Bonnet, J.M. Seiler, Thermal hydraulic phenomena in corium pools: the BALI experiment, in: 7th International Conference on Nuclear Engineering, Tokyo, Japan, 1999.
- O. Kymalainen, H. Tuomisto, O. Hongisto, T.G. Theofanous, Heat flux distribution from a volumetrically heated pool with high Rayleigh number, Nucl. Eng. Des. 149 (1994) 401-408. https://doi.org/10.1016/0029-5493(94)90305-0
- B.R. Sehgal, V.A. Bui, T.N. Dinh, J.A. Green, G. Kolb, SIMECO Experiments on in-vessel melt pool formation and heat transfer with and without a metallic layer, in: Proceedings of In-Vessel Core Debris Retention and Coolability Workshop, Garching, Germany, 1998, pp. 205-213.
- J.K. Lee, K.Y. Suh, K.J. Lee, J.I. Yun, Experimental study of natural convection heat transfer in a volumetrically heated semicircular pool, Ann. Nucl. Energy 73 (2014) 432-440. https://doi.org/10.1016/j.anucene.2014.07.019
- K.Y. Suh, et al., In-vessel Retention Strategy for High Power Reactors, Korea Electrical Engineering & Science Research Institute, Korea, 2005.
- A. Palagin, F. Kretzschmar, LIVE test FSt4: experimental results and simulation by CONV code, in: 13th International Topical Meeting on Nuclear Reactor Thermal Hydraulics, Kanazawa City, Japan, 2009.
- F.J. Asfia, V.K. Dhir, An experimental study of natural convection in a volumetrically heated spherical pool bounded on top with a rigid wall, Nucl. Eng. Des. 163 (1996) 333-348. https://doi.org/10.1016/0029-5493(96)01215-0
- T.G. Theofanous, M. Maguire, S. Angelini, T. Salmassi, The first results from the ACOPO experiment, Nucl. Eng. Des. 169 (1997) 49-57. https://doi.org/10.1016/S0029-5493(97)00023-X
- A. Bejan, Convection Heat Transfer, fourth ed., Wiley & Sons, New Jersey, 2003.
- V.G. Levich, Physicochemical Hydrodynamics, Prentice-Hall, Englewood Cliffs, New Jersey, 1962.
- J.N. Agar, Diffusion and convection at electrodes, Discuss. Faraday Soc. 26 (1947) 27-37.
- C.W. Tobias, R.G. Hickman, Ionic mass transfer by combined free and forced convection, Int. J. Res. Phys. Chem. Chem. Phys. 229 (1965) 145-166.
- E.J. Fenech, C.W. Tobias, Mass transfer by free convection at horizontal electrodes, Electrochim. Acta 2 (1960) 311-325. https://doi.org/10.1016/0013-4686(60)80027-8
- J.H. Heo, B.J. Chung, Natural convection heat transfer on the outer surface of inclined cylinders, Chem. Eng. Sci. 73 (2012) 366-372. https://doi.org/10.1016/j.ces.2012.02.012
- M.S. Chae, B.J. Chung, The effect of pitch-to-diameter on natural convection heat transfer of two vertically aligned horizontal cylinders,, Chem. Eng. Sci. 66 (2011) 5321-5329. https://doi.org/10.1016/j.ces.2011.07.021
- S.H. Ko, D.W. Moon, B.J. Chung, Applications of electroplating method for heat transfer studies using analogy concept, Nucl. Eng. Technol. 38 (2006) 251-258.
- K.U. Kang, B.J. Chung, The effects of the anode size and position on the limiting currents of natural convection mass transfer experiments of natural convection mass transfer experiments in a vertical pipe, Trans. KSME(B) 34 (2010) 1-8.
- J.H. Heo, B.J. Chung, Influence of helical tube dimensions on open channel natural convection heat transfer, Int. J. Heat Mass Transfer 55 (2012) 2829-2834. https://doi.org/10.1016/j.ijheatmasstransfer.2012.02.043
- J.Y. Moon, B.J. Chung, Time-dependent RayleigheBenard convection: cell formation and Nusselt number, Nucl. Eng. Des. 274 (2014) 146-153. https://doi.org/10.1016/j.nucengdes.2014.04.017
- M.S. Chae, B.J. Chung, Natural convection heat transfer in a uniformly heated horizontal pipe, Heat Mass Transfer 50 (2014) 114-123.
- H.K. Park, B.J. Chung, Optimal tip clearance in the laminar forced convection heat transfer of a finned plate in a square duct, Int. Commun. Heat Mass Transfer 63 (2015) 73-81. https://doi.org/10.1016/j.icheatmasstransfer.2015.02.010
- J. Krysa, A.A. Wragg, D.M. Thomas, M.A. Patrick, Free convection mass transfer in open upward-facing cylindrical cavities, Chem. Eng. J. 79 (2000) 179-186. https://doi.org/10.1016/S1385-8947(99)00105-9
- J. Krysa, D. Houf, C.F. Oduoza, A.A. Wragg, Free convective mass transfer at up-pointing truncated cones, Chem. Eng. J. 85 (2002) 147-151. https://doi.org/10.1016/S1385-8947(01)00219-4
- Y. Konishi, Y. Nakamura, Y. Fukunaka, K. Tsukada, K. Hanasaki, Anodic dissolution phenomena accompanying supersaturation of copper sulfate along a vertical plane copper anode, Electrochim. Acta 48 (2003) 2615-2624. https://doi.org/10.1016/S0013-4686(03)00305-0
- W.G. Steele, H.W. Coleman, Experimental and Uncertainty Analysis for Engineers, second ed., John Wiley & Son, Canada, 1999.
Cited by
- The influence of tip clearance and Prandtl number on turbulent forced convection heat transfer of rectangular fins vol.52, pp.12, 2016, https://doi.org/10.1007/s00231-016-1781-x
- Two- and three-dimensional experiments for oxide pool in in-vessel retention of core melts vol.49, pp.7, 2016, https://doi.org/10.1016/j.net.2017.05.008
- Numerical Assessment of Prandtl Number Effect on Transient Heat Flux Distribution Imposed on Nuclear Reactor Pressure Vessel by Application of PECM in a Volumetrically Heated Molten Pool vol.11, pp.8, 2016, https://doi.org/10.4236/eng.2019.118035
- Influence of Prandtl number, height and lateral cooling condition on laminar natural convection in a rectangular enclosure vol.55, pp.6, 2016, https://doi.org/10.1007/s00231-018-02540-7
- Comparisons of 2-D and 3-D IVR experiments for oxide layer in the three-layer configuration vol.52, pp.11, 2016, https://doi.org/10.1016/j.net.2020.04.016
- Review of research using analogy concept for thermal hydraulic and severe accident experiments vol.379, pp.None, 2021, https://doi.org/10.1016/j.nucengdes.2021.111257
- Influence of crust formation on the heat load to a reactor vessel under an in-vessel retention condition vol.166, pp.None, 2016, https://doi.org/10.1016/j.anucene.2021.108813