• Title/Summary/Keyword: Heat lamp

Search Result 181, Processing Time 0.024 seconds

Design Method for Flowing Water Purification with UV Lamp (UV램프를 이용한 유수처리형 살균장치의 설계방법)

  • Jung, Byung-Kyun;Lee, Jin-Jong;Jeong, Byeong-Ho
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.58 no.4
    • /
    • pp.455-460
    • /
    • 2009
  • A number of factors combine to make ultraviolet radiation a superior means of water purification for ground water, rainwater harvesting systems and so on. Ultraviolet radiation is capable of destroying all types of bacteria. Additionally, ultraviolet radiation disinfects rapidly without the use of heat or chemical additives which may undesirably alter the composition of water. In a typical operation, water enters the inlet of a UV lamp and flows through the annular space between the quartz sleeve and the outside chamber wall. The irradiated water leaves through the outlet nozzle. Several design features are combined to determine the dosage delivered. The first is Wavelength output of the lamp, the Second is Length of the lamp - when the lamp is mounted parallel to the direction of water flow, the exposure time is proportional to the length of the lamp, the third is Design water flow rate - exposure time is inversely related to the linear flow rate, the forth is Diameter of the purification chamber - since the water itself absorbs UV energy, the delivered dosage diminishes logarithmically with the distance from the lamp. In this paper, It describe the how to design optimal UV disinfection device for ground water and rainwater. To search the optimal design method, it was performed computer simulation with 3D-CFD discrete ordinates model and manufactured prototype. Using proposed design method manufactured prototype applied to disinfection test and proved satisfied performance.

Improvement of PWM Driving Control Characteristics for Low Power LED Security Light (저전력형 LED 보안등의 PWM형 구동제어 특성 개선)

  • Park, Hyung-Jun;Kim, Nag-Cheol;Kim, In-Su
    • Journal of IKEEE
    • /
    • v.21 no.4
    • /
    • pp.368-374
    • /
    • 2017
  • In this Paper, we developed a low power type LED security light using LED lighting that substitutes a 220[V] commercial power source for a solar cell module instead of a halogen or a sodium lamp. in addition, a PWM type drive control circuit is designed to minimize the heat generation problem and the drive current of the LED drive controller. in developed system, The light efficiency measurement value is 93.6[lm/W], and a high precision temperature sensor is used inside the controller to control the heat generation of the LED lamp. In order to eliminate the high heat generated from the LED lamp, it is designed to disperse quickly into the atmosphere through the metal insertion type heat sink. The heat control range of LED lighting was $50-55[^{\circ}C]$. The luminous flux and the lighting speed of the LED security lamp were 0.5[s], and the beam diffusion angle of the LED lamp was about $110[^{\circ}C]$ by the light distribution curve based on the height of 6[m].

Development of 1.2kW LED Light with Water-Air Circulation (수공냉 대류방식을 이용한 1.2kW급 LED 조명등 개발)

  • Yoon, Byung-Woo;Song, Jong-Kwan;Park, Jang-Sik;Kwon, Hong-Bae
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.10 no.5
    • /
    • pp.615-622
    • /
    • 2015
  • As the development of high efficiency and high flux density LEDs, the trend of illumination lamp industry transfers from conventional-lamps to the LED-lamps. For energy efficiencies, LED lamps are superior to the conventional lamps, but they have heat problems. Especially, the heat problems are severe for the high luminance lamps. They degrade the soldering point of the metal PCB, and shorten the life cycle of LEDs. So, the solution of the heat sinking is very important to develop high luminance LED lamps. This study suggested a new method to solve the heat problems for high luminance LED lamps, and developed a LED lamp which has 1200W power. In this study, a water jacket is installed to the LED lamp, and the cooing water is circulated by a water pump.

Temperature and Sound Noise Control for LED lamp (LED조명의 온도 및 소음 제어)

  • Yoon, Jong-Su;Choi, Hyeung-Sik;Shin, Hee-Young;Lim, Tae-Woo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.8
    • /
    • pp.1078-1084
    • /
    • 2011
  • In this paper, a temperature control for LED(Light Emitting Diode) lamp using a cooling fan is studied. An efficient temperature control scheme for the LED lamp using the fan wind at the lowest sound noise is studied. Also, for minimization study of sound noise and temperature control of an LED lamp, a sequential control algorithm using the cooling fan at the lowest sound noise is presented. For the study, after measurement of the minimum sound noise of the fan and related temperature of the LED lamp through tests, experiments on temperature control of the LED lamp using the fan was performed.

Nucleation and Growth of Diamond in High Pressure

  • Choi, Jun-Youp;Park, Jong-Ku;Kang, Suk-Joong L.;Kwang, Yong-Eun
    • The Korean Journal of Ceramics
    • /
    • v.2 no.4
    • /
    • pp.221-225
    • /
    • 1996
  • In diamond synthesis by metal film growth method under high pressure and high temperature, the nucleation and growth of diamond was observed dependent on the carbon source variation from graphite powder to the heat treated powders of lamp black carbon. At the low driving force condition near equilibrium pressure and temperature line, nucleation of diamond did not occur but growth of seed diamond appeared in the synthesis from lamp black carbon while both nucleation and growth of diamond took place in the synthesis from graphite. Growth morphology change of diamond occurred from cubo-octahedron to octahedron in the synthesis from graphite but very irregular growth of seed diamond occurred in the synthesis from lamp block carbon. Lamp black carbon transformed to recrystallized graphite first and very nucleation of diamond was observed on the recrystallized graphite surface. Growth morphology of diamond on the recrystallized graphite was clear cubo-octahedron even at higher pressure departure condition from equilibrium pressure and temperature line.

  • PDF

Study on the Development of High-efficiency, Long-life LED Fog Lamps for the Used Car Market

  • Park, Sang Jun;Lee, Young Lim
    • Transactions on Electrical and Electronic Materials
    • /
    • v.15 no.4
    • /
    • pp.201-206
    • /
    • 2014
  • LED lighting,considered to be a new growth industry, has attracted a great deal of attention due to its higher illumination and longer life time than existing light sources. In this study, high-efficiency and long-life LED fog lamps for automobiles were developed, which can substitute the existing 27 W halogen fog lamps for a used car market. For this purpose, the number of LED modules, the body, heat sink, and the output of the fog lamp were first optimized through a numerical analysis. Then, a 10 W-class LED fog lamp was prototyped based on the optimized numerical model, and the performance of the fog lamp was successfully verified through the experiments.

Study on Spectrum Properties by Frequency in Xe DBD lamp (제논 DBD 광원의 주파수에 따른 스펙트럼 특성 연구)

  • Pack, Gwang-Hyeon;Choi, Young-Sung;Park, Dae-Hee
    • Proceedings of the KIEE Conference
    • /
    • 2005.11a
    • /
    • pp.122-124
    • /
    • 2005
  • The flat panel lamp is used as back light. It is perceived the best type for the wide size LCD of back light system. However, the flat panel lamp has high value of heat. So it need to improve efficiency. Therefore, more researches are requested for the back light of the flat panel lamp. In this paper, the properties of spectrum is investigated according to change in frequency from 30kHz to 60kHz using power supplies voltage with changing from 500V to 700V. As a result, main spectrum peak of plasma showed in 450[nm], 630[nm], 750[nm] and spectrum peak of 750nm is the highest.

  • PDF

A Study on the Development of Three Wavelength Solar Bank By Mercury-Halogen Lamps Combination Method (수은-할로겐 램프 조합방식 삼파장 솔라뱅크 개발에 관한 연구)

  • Lee, Jae Myung;Baek, Sang Hwa;Park, So Jin
    • Applied Chemistry for Engineering
    • /
    • v.10 no.8
    • /
    • pp.1147-1154
    • /
    • 1999
  • We developed three-wavelength solar bank which is a very important part of the solar simulator with the commercial mercury lamps and projected halogen lamps. This was developed to satisfy simultaneously following three points: the ${\pm}10%$ uniformity of irradiance of the target area and irradiance in the each wave region and $1120W/m^2$ maximum irradiance of the solar in the summer. We used spectral radiance to determine the standard of the spectral irradiance and developed the perfect three-wavelength solar bank,considering of directionality, irradiance distance, interval both lamps, lamps combination and lamp numbers based on the measured spectral irradiance. To proof the capability of the three wavelength solar bank, We carefully analyzed color differences and heat transfer. As a result, we found that three wavelength solar bank was much better than commercial infrared lamp bank in terms of the color differences, heat transfer phenomena.

  • PDF

Study on Thermal Pattern and Current Characteristics of an LED Street Lamp (LED 가로등의 발열 패턴 및 전류 특성에 관한 연구)

  • Kim, Hyang-Kon;Choi, Chung-Seog
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.58 no.3
    • /
    • pp.357-361
    • /
    • 2009
  • This study performed analysis on the thermal pattern and current characteristics of an LED ((Light Emitting Diode) street lamp. It did this using a TVS (Thermal Video System) to analyze the LED street lamp's thermal pattern, and measured its characteristics using an oscilloscope. The ambient temperature and humidity during the experiment were maintained at $24{\pm}2[^{\circ}C]$ and 50~60[%]. The capacity of the LED street lamp was 120[W] and nine sets of modules were arranged at uniform intervals. On one module, 24 LED lamps were arranged in a radial pattern. The analysis of the thermal diffusion pattern at the front of the LED lamp showed that the maximum surface temperature was approximately $34[^{\circ}C]$. In addition, there was almost no change in the temperature of the upper cover, and the temperature at the side showed a uniform thermal diffusion pattern. The surface temperature of the converter converting AC to DC increased to approximately $46[^{\circ}C]$. The analysis results of the thermal characteristics of one LED indicated uniform thermal characteristics for an initial eight minutes. However, the temperature at the center of the LED increased to approximately $82[^{\circ}C]$ after 12 minutes had elapsed. It can be seen from this that the temperature at the center of the LED was higher than the allowable temperature, $70[^{\circ}C]$ of the insulating material for general electrical devices. Therefore, it is necessary to design a lamp in such a way that the plastic insulating material does not come into contact with or get close to the LED lamp. The voltage of the LED lamp converted by the AC/DC converter was measured at DC 27[V] and the current was DC 13[A]. Consequently, it can be seen that in order to secure an adequate light source, it is important to supply a stable current that was greater than the current of other light sources. Therefore, appropriate radiation of heat is required to secure the stability and reliability of the system.

A Study on High Power LED Lamp Structures (COB LED 램프 패키징 방열 특성과 신뢰성에 관한 연구)

  • Hong, Dae-Woon;Lee, Song-Jae
    • Korean Journal of Optics and Photonics
    • /
    • v.21 no.3
    • /
    • pp.118-122
    • /
    • 2010
  • We fabricated a high power LED lamp structure which utilizes the modified COB concept based on an MCPCB with insulation layer partially removed. In the proposed structure, no insulation layer exists between the LED chip and the metal base. As a result, the heat generated in the chip is easily dissipated through the metal base. In actual measurement as well as in thermal simulation, the fabricated LED lamp structure showed superb thermal properties, compared to the SMD LED lamp attached on an MCPCB or the LED lamp based on conventional COB concept.