• Title/Summary/Keyword: Heat energy

Search Result 8,023, Processing Time 0.032 seconds

Effect of continuous pulsed electric fields treatments on quality of apple juice (사과주스의 품질에 미치는 pulsed electric field 연속 처리효과)

  • Ahn, Seong-Hwan;Lim, Jeong-Ho;Kim, Young-Ho;Chung, Suk Jin;Park, Kee-Jai
    • Food Science and Preservation
    • /
    • v.20 no.5
    • /
    • pp.650-658
    • /
    • 2013
  • Apple juices were sterilized by continuous pulsed electric field (PEF) treatments of pulse width of 25 ${\mu}s$ at electric field intensity of 20.0 kV/cm, and with the varied pulse frequencies of 35 Hz (40 kJ/L), 55 Hz (70 kJ/L), 72 Hz (100 kJ/L) and 85 Hz (130 kJ/L). The PEF treatments of apple juice reduced the microbial counts from 5.3 log CFU/mL of initial state to 3.0 log CFU/mL after PEF treatment at energy density of 130 kJ/L. Also yeast and fungi after PEF treatments were reduced from 5.3 log CFU/mL to 3.0 log CFU/mL and Escherichia coli were from 5.3 log CFU/mL of initial state to 4.7 log CFU/mL to < $10^1$ CFU/mL. The soluble solids and free sugars did not significantly differ (p<0.05) depending on conditions of PEF treatment. The total phenolic contents and antioxidant activity such as the DPPH and ferric reducing antioxidant power (FRAP) by PEF treatments were significantly partly reduced, but the PEF-reduced value came in smaller quantities than the heat treatment at $65^{\circ}C$. The iterative PEF treatments with pulse width of 25 ${\mu}s$ and pulse frequency of 85 Hz at electric field intensity of 20.0 kV/cm showed limited in microbial reduction. Also, total phenolic contents and antioxidant activity such as DPPH and FRAP, significantly decreased depending on treatment numbers of PEF (p<0.05).

Characteristics of Isotherm, Kinetic, and Thermodynamic Parameters for Reactive Blue 4 Dye Adsorption by Activated Carbon (활성탄에 의한 Reactive Blue 4 염료의 흡착에 대한 등온선, 동력학 및 열역학적 특성)

  • Lee, Jong-Jib
    • Clean Technology
    • /
    • v.26 no.2
    • /
    • pp.122-130
    • /
    • 2020
  • The isotherm, kinetic, and thermodynamic parameters of reactive blue 4 adsorbed by activated carbon were investigated for activated carbon dose, pH, initial concentration, contact time, and temperature data. The adsorption of the RB 4 dye by activated carbon showed a concave shape in which the percentage of adsorption increased in both directions starting from pH 7. The isothermal adsorption data were applied to Langmuir, Freundlich, and Temkin isotherms. Both Freundlich and Langmuir isothermal adsorption models fit well. From determined Freundlich separation factor (1/n = 0.125 ~ 0.232) and Langmuir separation factor (RL = 1.53 ~ 1.59), adsorption of RB 4 by activated carbon could be employed as an effective treatment method. The constant related to the adsorption heat (BT = 2.147 ~ 2.562 J mol-1) of Temkin showed that this process was physical adsorption. From kinetic experiments, the adsorption process followed the pseudo second order model with good agreement. The results of the intraparticle diffusion model showed that the inclination of the first straight line representing the surface diffusion was smaller than that of the second straight line representing the intraparticle pore diffusion. Therefore, it was confirmed that intraparticle pore diffusion is the rate-controlling step. The negative Gibbs free energy change (ΔG = -3.262 ~ -7.581 kJ mol-1) and the positive enthalpy change (ΔH = 61.08 kJ mol-1) indicated the spontaneous and endothermic nature of the adsorption process, proving this process to be spontaneous and endothermic.

Hydrogen Production from Photocatalytic Splitting of Water/Methanol Solution over a Mixture of P25-TiO2 and AgxO (산화은/이산화티타늄 혼합물을 광촉매로 활용한 물/메탄올 분해 수소제조)

  • Kim, Kang Min;Jeong, Kyung Mi;Park, No-Kuk;Lee, Tae Jin;Kang, Misook
    • Clean Technology
    • /
    • v.21 no.4
    • /
    • pp.271-277
    • /
    • 2015
  • A photocatalyst which mixed by the commercialized P25-TiO2 and a synthesized AgxO was used in an appropriate weight ratio to effectively produce hydrogen gas in this study. The AgxOs were synthesized with the conventional sol-gel method, and tetramethylammonium hydroxides were added at the synthesis process in order to stabilize the solutions, and then the solutions were heat-treated at the temperatures of -5, 25, and 50 ℃, resulted to obtain the three types of silver oxides. Physicochemical properties of the synthesized AgxOs were identified through X-ray diffraction analysis (XRD), scanning emission microscopy (SEM), ultraviolet-visible spectroscopy, and X-ray photoelectron spectroscopy (XPS). In the photolysis results of water/methanol (weight ratio 1:1) solution, the mixture of P25-TiO2/AgxO exhibited a significantly higher hydrogen gases evolution, compared to that of pure P25-TiO2. Additionally, the addition of H2O2 as an supplement oxidant and in AgxO synthesized at 50 ℃ improved the hydrogen production efficiency. In particular, the emitted hydrogen gases reached to 13,000 μmol during 8 hours when a mixed catalyst, AgxO of 0.1 g and P25-TiO2 of 0.9 g, were used.

Phosphatidic Acid Production by PLD Covalently Immobilized on Porous Membrane (공유결합으로 다공성 막에 고정화된 PLD에 의한 포스퍼티딕산 생산)

  • Park, Jin-Won
    • Clean Technology
    • /
    • v.21 no.4
    • /
    • pp.224-228
    • /
    • 2015
  • Phospholipase D (PLD) was immobilized on a submicro-porous membrane through covalent immobilization. The immobilization was conducted on the porous membrane surface with the treatment of polyethyleneimine, glutaraldehyde, and the anhydrase, in sequence. The immobilization was confirmed using X-ray photon spectrometer. The pH values of phosphatidylcholine (PC) dispersion solution with buffer were monitored with respect to time to calculate the catalytic activities of PC for free and immobilized PLD. The catalytic rate constant values for free PLD, immobilized PLD on polystyrene nanoparticles, and immobilized PLD on a porous cellulose acetate membrane were 0.75, 0.64, and 0.52 s-1, respectively. Reusability was studied up to 10 cycles of PC hydrolysis. The activity for the PLD immobilized on the membrane was kept to 95% after 10 cycles, and comparable to the PLD on the nanoparticles. The stabilities for heat and storage were also investigated for the three cases. The results suggested that the PLD immobilized on the membrane had the least loss rate of the activity compared to the others. From these studies, the porous membrane was feasible as a carrier for the PLD immobilization in the production of phosphatidic acid.

Effects of Annealing Temperature on Interface Properties for Al/Mild Steel Clad Materials (어닐링 온도 변화가 Al/연강 클래드재의 계면 특성에 미치는 영향)

  • Jeong, Eun-Wook;Kim, Hoi-Bong;Kim, Dong-Yong;Kim, Min-Jung;Cho, Young-Rae
    • Korean Journal of Materials Research
    • /
    • v.22 no.11
    • /
    • pp.591-597
    • /
    • 2012
  • For heat exchanger applications, 2-ply clad materials were fabricated by rolling of aluminum (Al) and mild steel sheets. Effects of annealing temperature on interface properties, especially on inter-layer formation and softening of strain hardened mild-steel, for Al/mild steel clad materials, were investigated. To obtain optimum annealing conditions for the Al/mild steel clad materials, annealing temperature was varied from room temperature to $600^{\circ}C$. At the annealing temperature about $450^{\circ}C$, an inter-layer was formed in an island-shape at the interface of the Al/mild steel clad materials; this island expanded along the interface at higher temperature. By analyzing the X-ray diffraction (XRD) peaks and the energy dispersive X-ray spectroscopy (EDX) results, it was determined that the exact chemical stoichiometry for the inter-layer was that of $Fe_2Al_5$. In some samples, an X-layer was formed between the Al and the inter-layer of $Fe_2Al_5$ at high annealing temperature of around $550^{\circ}C$. The existence of an X-layer enhanced the growth of the inter-layer, which resulted in the delamination of the Al/mild-steel clad materials. Hardness tests were also performed to examine the influence of the annealing temperature on the cold deformability, which is a very important property for the deep drawing process of clad materials. The hardness value of mild steel gradually decreased with increasing annealing temperature. Especially, the value of hardness sharply decreased in the temperature range between $525^{\circ}C$ and $550^{\circ}C$. From these results, we can conclude that the optimum annealing temperature is around $550^{\circ}C$ under condition of there being no X-layer creation.

Progress in Composite Polymer Membrane for Application as Separator in Lithium Ion Battery (리튬 이온 전지의 분리막으로 사용하기 위한 복합 고분자 막의 동향)

  • Oh, Seok Hyeon;Patel, Rajkumar
    • Membrane Journal
    • /
    • v.30 no.4
    • /
    • pp.228-241
    • /
    • 2020
  • Separators, which produces physical layer between a cathode and anode, are getting enormous attention as the quality of the separator determines the performance of lithium ion batteries (LIBs). Porous membranes based on polyethylene (PE) and polypropylene (PP) are generally utilized as the separator of LIBs because of their high electrochemical stability and suitable mechanical strength. However, low thermal resistance and wettability of PE and PP membranes limited the potential of LIBs. Operating at the temperature exceeding the melting point of membranes, the separators change their structures which lead to short circuit of LIBs. Low wettability of the separators corresponds to low ionic conductivity which increases the cell resistance. To overcome these weaknesses of PE and PP separators, different types of separator were prepared by co-electrospinning, applying coating layer, forming core shell around membrane, and papermaking method. The synthesized separator greatly enhanced the heat resistance and wettability of separator and mechanical properties like flexibility and tensile strength. In this review different type of polymer membrane used as separator in lithium ion battery are discussed.

TREATMENT OF COMPOSITE RESIN RESTORATION WITH THE AIR ABRASIVE TECHNIQUE (Air abrasive technique을 이용한 복합레진 수복 증례)

  • Lee, Chang-Woo;Jang, Ki-Taeg;Lee, Sang-Hoon;Hahn, Se-Hyun
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.24 no.4
    • /
    • pp.763-770
    • /
    • 1997
  • The air abrasive technique is a non-mechanical method by which teeth are treated before restoration and stains and calculi are removed from tooth surfaces using the kinetic energy of small particles. The air abrasive technique in dentistry was first introduced in the 1950's with as instrument called 'Airdent'. But, as the main restorative materials of the period were amalgam and gold, and the instrument's inability to control the flow of particles caused the particles to be spread throughout the clinics, widespread use was not possible. In the 1990's, as these techincal problems were solved and more interest in new restorative materials rose in an effort to preserve sound tooth structure, new developements took place in instruments related to the air abrasive technique. The air abrasive technique produces less pressure, vibration and heat that might cause patient discomfort and facilitates the preservation of sound tooth structure. It also reduces the need for anesthesia and is less harmful to the pulp. Other advantages include increase in dentin bonding strength of composite resin, lower possibility of saliva contamination and maintenance of a dry field. But there is not direct contact between the nozzle and the tooth, the operator cannot use his or her tactile sense and must rely solely upon visual input. Other disadvantages are: the tooth preparation depends on the operator's ability; alpha-alumina particles, after bouncing off the tooth surface, cause damage to dental mirrors; the equipment is expensive and takes up a certain amount of space in the clinic. The author conducted case report using the air abrasive technique on patient visiting the Department of Pediatric Dentistry at Seoul National University Dental Hospital and arrived at the following conclusions. 1. The tooth preparation capability of different air abrasive devices varied widely among manufacturers. 2. It was more effective in treating early caries lesions and stains compared to lesions where caries had already progressed to produce soft dentin. 3. The cold stream and noise caused by the evacuation system was a major cause of discomfort to pediatric patients. 4. As there is no direct contact with tooth surface when using the air abrasive technique for tooth preparation, considerable experience and skill is required for proper tooth preparation.

  • PDF

Rigorous Modeling and Simulation of Multi-tubular Reactor for Water Gas Shift Reaction (Water Gas Shift Reaction을 위한 Multi-tubular Reactor 모델링 및 모사)

  • Park, Junyong;Choi, Youngjae;Kim, Kihyun;Oh, Min
    • Korean Chemical Engineering Research
    • /
    • v.46 no.5
    • /
    • pp.931-937
    • /
    • 2008
  • Rigorous multiscale modelling and simulation of the MTR for WGSR was carried out to accurately predict the behavior of process variables and the reactor performance. The MTR consists of 4 fixed bed tube reactors packed with heterogeneous catalysts, as well as surrounding shell part for the cooling purpose. Considering that fluid flow field and reaction kinetics give a great influence on the reactor performance, employing multiscale methodology encompassing Computational Fluid Dynamics (CFD) and process modeling was natural and, in a sense, inevitable conclusion. Inlet and outlet temperature of the reactant fluid at the tube side was $345^{\circ}C$ and $390^{\circ}C$, respectively and the CO conversion at the exit of the tube side with these conditions approached to about 0.89. At the shell side, the inlet and outlet temperature of the cooling fluid, which flows counter-currently to tube flow, was $190^{\circ}C$ and $240^{\circ}C$. From this heat exchange, the energy saving was achieved for the flow at shell side and temperature of the tube side was properly controlled to obtain high CO conversion. The simulation results from this research were accurately comparable to the experimental data from various papers.

A Study on the Experimental Measurements and Its Recovery for the Rate of Boil-Off Gas from the Storage Tank of the CO2 Transport Ship (CO2 수송선 저장탱크의 BOG 측정 실험 및 회수에 관한 연구)

  • Park, Jin-Woo;Kim, Dong-Sun;Ko, Min-Su;Cho, Jung-Ho
    • Clean Technology
    • /
    • v.20 no.1
    • /
    • pp.1-6
    • /
    • 2014
  • $CO_2$ is generated by the combustion reaction, when getting the energy from fossil fuel. If the carbon dioxide emissions increases more, the global warming problem will become more serious. CCS (carbon capture storage) needs to be developed for the prevention of this. When liquefied $CO_2$ is transported, BOG (boil-off gas) is generated because of several problems. In the study, by injecting liquefied $CO_2$ in two tanks which contains $40m^3$each, the amount of BOG and its composition were measured during 30 days when generating pressure changes and external heat, loading, unloading. In result, 16,040 kg of BOG was generated and the composition has been found out to be 99.95% $CO_2$ and 0.05 % $N_2$. Also, we conducted simulation process for reliquefaction of generated BOG with vapor compression cycle using the PRO/II with PROVISION version 9.2. As a result, the refrigeration cycle of the total circulation flow rate was 42.07 kg/h and the condenser utility consumption was 48.85 kg/h.

Improvement in Adhesion Properties of Epoxy/Polyamide/MPD Reactive Blends by means of AP Plasma Treatment and Morphological Tuning (상압 플라즈마 표면처리와 형태학적 조절에 의한 에폭시/폴리아미드/MPD 반응성 블렌드의 접착력 향상)

  • Song, Hyun-Woo;Kang, Hak-Su;Kim, Won-Ho;Marzi, Stephan;Kim, Byung-Min;Choe, Young-Son
    • Polymer(Korea)
    • /
    • v.33 no.4
    • /
    • pp.284-289
    • /
    • 2009
  • The morphology and mechanical properties of epoxy/polyamide/MPD reactive blends with various amount of polyamide were investigated. The cure behaviors, mechanical strengths, and morphological changes of the epoxy blend systems were analyzed by using DSC, UTM, and SEM, respectively. The amount of high soluble polyamide in epoxy ranged from 0 to 30 phr, and the cure reaction occurred at $170^{\circ}$ for 30 min. The start and maximum exothermic temperature in heat flows during cure reactions appeared at almost same temperature, indicating that soluble polyamide could rarely hinder the cure reactions. From the SEM images, it was found that the size of separated-phase was very fine about 100-300 nm, and at 20 phr of polyamide the boundary of separated-phase was unclear and the phase revealed co-continuous. By AP plasma treatment of specimen surface, the adhesion strength was increased by 20% due to enhanced surface free energy. By blending 20 phr of polyamide with epoxy, the adhesion strength was increased by 50% due to co-continuous phase in morphology. By considering the surface treatment of specimen and morphological tuning of the blends, it can be expected that the improvement in toughness and excellent adhesion strength can be achieved in structural adhesive systems.