• 제목/요약/키워드: Heat dissipation power

검색결과 154건 처리시간 0.022초

PCM물질을 적용한 자연대류형 방열기의 방열특성에 관한 실험적 연구 (An Experimental Study on the Heat Dissipation Characteristics of the Natural Convection Type Radiator by using the PCMs)

  • 성대훈;김민준;김종하;윤재호;김우승;백종현
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2008년도 하계학술발표대회 논문집
    • /
    • pp.1155-1160
    • /
    • 2008
  • In the present study investigated the heat dissipation characteristics of the natural convection type radiator by using the latent heat from a solid-liquid PCM(Phase Change Material). Total radiator volume size is $423{\times}295{\times}83\;mm$ and PCM tank size is $398{\times}270{\times}26\;mm$. The objective was elapsed time lower than maximum operating temperature. Experimental condition, in order to study the effects of the phase-change phenomenon, carried out the various mass flow rate, input electric power, and heat of fusion temperature of two type PCMs. For the above experimental conditions, the cooling performance by using the latent heat showed that heat absorption rate performs for about 3 hours from using PCM $38^{\circ}C$. However, cooling performance by using PCM $50^{\circ}C$ showed higher than surface temperature of heater block because of heat of fusion.

  • PDF

백시트 종류에 따른 태양전지 모듈의 방열 특성 평가 (Evaluation of Heat Transfer Characteristics of PV Module with Different Backsheet)

  • 배수현;오원욱;강윤묵;이해석;김동환
    • Current Photovoltaic Research
    • /
    • 제6권2호
    • /
    • pp.39-42
    • /
    • 2018
  • When the PV module is illuminated in a high temperature region, solar cells are also exposed to the high temperature external environment. The operating temperature of the solar cell inside the module is increased, which causes the power drops. Various efforts have been made to reduce the operating temperature and compensate the power of solar cells according to the outdoor temperature such as installing of a cooling system. Researches have been also reported to lower the operating temperature of solar cells by improving the heat dissipation properties of the backsheet. In this study, we conducted a test to measure the internal temperature of each module components and the external temperature when the light was irradiated according to the surrounding temperature. Backsheets with different thermal conductivities were compared in the test. Finally, in order to explain the temperature difference between the solar cell and the outside of the module, we proposed an evaluation method of the heat transfer characteristics of photovoltaic modules with different backsheet.

돌입전류 제한용 $Mn_3$$O_4$-NiO-CuO-$Co_3$$O_4$-ZnO계 NTC 써미스터에서 ZnO/$Mn_3$$O_4$비에 따른 전기적 특성 (Electrical Properties as the ratio of ZnO/$Mn_3$$O_4$ of NTC Thermistor with $Mn_3$$O_4$-NiO-CuO-$Co_3$$O_4$-ZnO system for Inrush Current Limited)

  • 윤중락;김지균;권정렬;이현용;이석원
    • 한국전기전자재료학회논문지
    • /
    • 제13권6호
    • /
    • pp.472-477
    • /
    • 2000
  • Oxides of the form Mn$_{4}$/O$_{4}$-CuO-Co$_{3}$/O$_{4}$-NiO-ZnO present properties that make them useful as power NTC thermistor for current limited. Electrical properties of Mn$_{3}$/O$_{4}$-CuO-Co$_{3}$/O$_{4}$-CuO-Co$_{3}$/O$_{4}$-NiO-ZnO power NTC thermistor such as I-V characteristics tim constant activation energy and heat dissipation coefficient measured as a function of temperature and composition. In Mn$_{4}$/O$_{4}$-CuO-Co$_{3}$/O$_{4}$-NiO-ZnO system with the 5wt% addition of Co$_{3}$/O$_{4}$ it can be seen that resistivity and B-constant were increased as the ratio of ZnO/Mn$_{3}$/O$_{4}$ was increased. Heat dissipation constant, I-V characteristics and time constant showed similar behaviour compared with those of conventional thermistors. In particular resistance change ratio ($\Delta$R) the important factor for reliability varied within $\pm$5% indicating the compositions of these products could be available for power thermistor.

  • PDF

단면 변화가 있는 기주의 열음향진동에 관한 연구 (A Study on the Thermoacoustic Oscillation of an Air Column with Variable Cross Section Area)

  • 권영필;홍하표
    • 대한설비공학회지:설비저널
    • /
    • 제17권2호
    • /
    • pp.131-139
    • /
    • 1988
  • The thermoacoustic oscillation induced in an air column with variable cross section area is investigated theoretically and experimentally. The onset condition of the oscillation is derived by equating the acoustic power production to the power dissipation. The power production at the heater is predicted by using the efficiency factor obtained by heat transfer analysis for a single wire in a uniform cross flow and considering the interference between heater wires. The power dissipation is estimated by measuring the attenuating coefficient from the pressure decay curve. The theoretical prediction to the onset condition of the oscillation is confirmed experimentally. The effect of the variation of the column cross section area on the onset condition is presented.

  • PDF

직류안정전화원의 제어소자에 전력소모의 최소화에 관한 연구 (A Study on the Minimization of Power Dissipation in Control Element of the Series D.C. Voltage Regulator)

  • 최병하;이균하;최희태
    • 대한전자공학회논문지
    • /
    • 제12권5호
    • /
    • pp.12-18
    • /
    • 1975
  • Triac phase controlled pre-regulator를 이용한 직류안정화전원에서 제어소자 전력소모를 촤소로 줄이기 위하여, 부하전류의 증가에 따라 제어소자 양단전압을 낮추어 주는 회로를 고안하여 부가하였다. 이렇게 하므로써 제어소자의 전력소모가 약 40%정도 감소되어 방열장치가 간단해지거나 전력용량을 증가할 수 있게 되었으며 열발산이 곤란한 monolithic I.C.화에 유용하도록 하였다. A method on minimizing the power dissipation in the control element of a series D.C. voltage regutator is devised. An additional control circuit which reduces the average voltage drop across the control element according to increasing the load current is attached :o the trial phase controlled pre-regulator system. It is verified that the power dissipation in the control element is reduced up to 40% by this. circuit arrangement. The heat sink system can be simplified and the capacity of tile handling power is also increased. It is expected that this circuit arrangement can be applied to I.C. fabrication.

  • PDF

Effects of some factors on the thermal-dissipation characteristics of high-power LED packages

  • Ji, Peng Fei;Moon, Cheol-Hee
    • Journal of Information Display
    • /
    • 제13권1호
    • /
    • pp.1-6
    • /
    • 2012
  • Decreasing the thermal resistance is the critical issue for high-brightness light-emitting diodes. In this paper, the effects of some design factors, such as chip size (24 and 35 mil), substrate material (AlN and high-temperature co-fired ceramic), and die-attach material (Ag epoxy and PbSn solder), on the thermal-dissipation characteristics were investigated. Using the thermal transient method, the temperature sensitivity parameter, $R_{th}$ (thermal resistance), and junction temperature were estimated. The 35-mil chip showed better thermal dissipation, leading to lower thermal resistance and lower junction temperature, owing to its smaller heat source density compared with that of the 24-mil chip. By adopting an AlN substrate and a PbSn solder, which have higher thermal conductivity, the thermal resistance of the 24-mil chip can be decreased and can be made the same as that of the 35-mil chip.

고출력 5 Watt LED기반 탐조등의 방열설계 (Thermal Design of High-power 5 Watt LEDs-based Searchlight)

  • 이아람;허인성;이세일;유영문;김종수
    • 한국전기전자재료학회논문지
    • /
    • 제27권9호
    • /
    • pp.594-599
    • /
    • 2014
  • The heat dissipation conditions of high-power 5 watt LEDs-based searchlight modules were optimized with varying LED bar'shape, materials, and ambient temperature. The LED junction temperature was estimated by using Computational Fluid Dynamics simulation. The optimal heat dissipation conditions were found as follows; LED bar' shape: L=80 mm, W=4 mm, t=10 mm, copper material, LED junction temperature of $116.6^{\circ}C$, ambient temperature of $50^{\circ}C$, total mass of 184 g, and shadowing area of $320mm^2$. The difference between the junction temperatures of our fabricated and simulated LEDs-based searchlight modules is about $3^{\circ}C$, which confirms the validity of our thermal simulation results.

Optimization of Bidirectional DC/DC Converter for Electric Vehicles Based On Driving Cycle

  • Yutao, Luo;Feng, Wang
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권5호
    • /
    • pp.1934-1944
    • /
    • 2017
  • As a key component of high-voltage power conversion system for electric vehicles (EVs), bidirectional DC/DC (Bi-DC/DC) is required to have high efficiency and light weight. Conventional design methods optimize the Bi-DC/DC at the maximum power dissipation point (MPDP). For EVs application, the work condition of the Bi-DC/DC is not strict as the MPDP, where the design method using MPDP may not be optimal during travel of EVs. This paper optimizes the Bi-DC/DC converter targeting efficiency and weight based on the driving cycle. By analyzing the two-phase interleaved Bi-DC/DC for hybrid energy storage systems (HESS) of EVs, its power dissipation is calculated, and an efficiency model is derived. On this basis, weight models of capacitor, inductor and heat sink are built, as well as a dynamic temperature model of heat sink. Based on these models, a method using New European Driving Cycle (NEDC) for optimal design of Bi-DC/DC which simultaneously considered efficiency and weight is proposed. The simulation result shows that compare with conventional optimization methods revealed that the optimization approach based on driving cycle allowed significant weight reduction while meeting the efficiency requirements.

Modeling and Investigation of Multilayer Piezoelectric Transformer with a Central Hole for Heat Dissipation

  • Thang, Vo Viet;Kim, In-Sung;Jeong, Soon-Jong;Kim, Min-Soo;Song, Jae-Sung
    • Journal of Electrical Engineering and Technology
    • /
    • 제6권5호
    • /
    • pp.671-676
    • /
    • 2011
  • A multilayer square-type piezoelectric transformer with a hole at the center was investigated in this paper. Temperature distribution at the center was improved by using this construction, therefore increasing input voltage and output power. This model was simulated and investigated successfully by applying a finite element method (FEM) in ATILA software. An optimized structure was then fabricated, examined, and compared to the simulation results. Electrical characteristics, including output voltage and output power, were measured at different load resistances. The temperature distribution was also monitored using an infrared camera. The piezoelectric transformer operated at first radial vibration mode and a frequency area of 70 kHz. The 16 W output power was achieved in a three-layer transformer with 96% efficiency and $20^{\circ}C$ temperature rise from room temperature under 115 V driving voltage, 100 ${\Omega}$ matching load, $28{\times}28{\times}1.8mm$ size, and 2 mm hole diameter. With these square-type multilayer piezoelectric transformers, the temperature was concentrated around the hole and lower than in piezoelectric transformers without a hole.

히스테리시스 손실에 의한 괘도부품의 온도 추정에 관한 연구 (A Study on the Estimation of Temperature in Track Components due to Hystresis Loss.)

  • 김형제;김병탁;백운경
    • 동력기계공학회지
    • /
    • 제5권3호
    • /
    • pp.48-55
    • /
    • 2001
  • In many applications. rubber components undergo dynamic stresses or deformations of fairly large magnitude. Since rubbers are not fully elastic, a part of the mechanical energy is converted into heat due to the hysteresis loss. Heat generation without adequate heat dissipation leads to heat build up. i. e. internal temperature rise. The purpose of this paper is to predict temperature rise caused by the hysteresis loss, in a rubber pad subjected to complex dynamic deformation. In this unsteady thermal analysis, the temperature distributions of track components are displayed in contour shapes and the temperature variations of some important nodes are represented graphically with respect to the running time of the tank.

  • PDF