DOI QR코드

DOI QR Code

Modeling and Investigation of Multilayer Piezoelectric Transformer with a Central Hole for Heat Dissipation

  • Thang, Vo Viet (Department of Energy Conversion, University of Science and Technology) ;
  • Kim, In-Sung (Battery and Piezoelectric Research Center, KERI) ;
  • Jeong, Soon-Jong (Battery and Piezoelectric Research Center, KERI) ;
  • Kim, Min-Soo (Battery and Piezoelectric Research Center, KERI) ;
  • Song, Jae-Sung (Battery and Piezoelectric Research Center, KERI)
  • Received : 2010.08.03
  • Accepted : 2011.03.24
  • Published : 2011.09.01

Abstract

A multilayer square-type piezoelectric transformer with a hole at the center was investigated in this paper. Temperature distribution at the center was improved by using this construction, therefore increasing input voltage and output power. This model was simulated and investigated successfully by applying a finite element method (FEM) in ATILA software. An optimized structure was then fabricated, examined, and compared to the simulation results. Electrical characteristics, including output voltage and output power, were measured at different load resistances. The temperature distribution was also monitored using an infrared camera. The piezoelectric transformer operated at first radial vibration mode and a frequency area of 70 kHz. The 16 W output power was achieved in a three-layer transformer with 96% efficiency and $20^{\circ}C$ temperature rise from room temperature under 115 V driving voltage, 100 ${\Omega}$ matching load, $28{\times}28{\times}1.8mm$ size, and 2 mm hole diameter. With these square-type multilayer piezoelectric transformers, the temperature was concentrated around the hole and lower than in piezoelectric transformers without a hole.

Keywords

References

  1. V. V. Thang, I. S. Kim, H. K. Joo, J. S. Song, S. J. Jeong, and M. S. Kim, "Investigation of the Optimum Design for a 10 W Step-down 3-layer Piezoelectric Transformer", J. Korean Phys. Soc., 58, pp. 622-626, 2011. https://doi.org/10.3938/jkps.58.622
  2. K. J. Lim, S. H. Park, O. D. Kwon, and S. H. Kang, KIEE Inter. Trans. Elec. App. , 5-C, 102 (2005).
  3. H. K. Joo, I. S. Kim, J. S. Song, S. J. Jeong, and M. S. Kim, J. Korean Phys. Soc., 56, 374 (2010). https://doi.org/10.3938/jkps.56.374
  4. I. S. Kim, H. K. Joo, S. J. Jeong, M. S. Kim, and J. S. Song, Phys. Status Solidi., 7, 2331 (2010). https://doi.org/10.1002/pssc.200983754
  5. I. S. Kim, H. K. Joo, J. S. Song, S. J. Jeong, and M. S. Kim, J. Korean Phys. Soc., 57, 963 (2010). https://doi.org/10.3938/jkps.57.963
  6. S. Priya, S. Ural, H. W. Kim, K. Uchino, and T. Ezaki, Jpn. J. Appl. Phys., 43, 3503 (2004). https://doi.org/10.1143/JJAP.43.3503
  7. P. Laoratanakul and K. Uchino, Appl. Ferroelect. 2004. ISAF-04. 2004 14th IEEE Inter. Symp., 229 (2004).
  8. I. S. Kim, H. K. Joo, S. J. Jeong, M. S. Kim, J. S. Song, and V. V. Thang, J. Korean Phys. Soc., 58, 627 (2011). https://doi.org/10.3938/jkps.58.627
  9. I. S. Kim, M. S. Kim, S. J. Jeong, J. S. Song, H. K. Joo, V. V. Thang, and A. Muller, J. Korean Phys. Soc., 58, 580 (2011). https://doi.org/10.3938/jkps.58.580
  10. S. Priya, H. Kim, S. Ural, and K. Uchino, IEEE Trans. Ultrason., Ferroelect., Freq. Contr., 53, 810 (2006). https://doi.org/10.1109/TUFFC.2006.1621509
  11. Y. J. Yang, C. C. Chen, Y. M. Chen, and C. K. Lee, J. Chin. Inst. Eng. 31, 925 (2008). https://doi.org/10.1080/02533839.2008.9671447
  12. H. L. Li, J. H. Hu, and H. L. W. Chan, IEEE Trans. Ultrason., Ferroelect., Freq. Contr., 51, 1247 (2004). https://doi.org/10.1109/TUFFC.2004.1350952
  13. E. Heinonen, J. Juuti, and S. Leppävuori, J. Eur. Ceram. Soc., 25, 2467 (2005). https://doi.org/10.1016/j.jeurceramsoc.2005.03.083
  14. S. T. Ho, IEEE Trans. Ultrason., Ferroelect., Freq. Contr., 54, 2110 (2007). https://doi.org/10.1109/TUFFC.2007.506
  15. T. Tsuchiya, Y. Kagawa, N. Wakatsuki, and H. Okamura, IEEE Trans. Ultrason., Ferroelect., Freq. Contr., 48, 872 (2001).
  16. B. Koc, Y. Gao, and K. Uchino, Jpn. J. Appl. Phys. 42, 509 (2003). https://doi.org/10.1143/JJAP.42.509
  17. H. W. Yoo, C. H. Lee, J. S. Rho, and H. K. Jung , IEEE Trans. Ultrason., Ferroelect., Freq. Contr., 53, 8 (2006). https://doi.org/10.1109/TUFFC.2006.1588383
  18. S. J. Yoon, J. W. Choi, J. Y. Choi, D. D. Wan, Q. Li, and Y. Yang, J. K. Phys. Soc. 57, 863 (2010). https://doi.org/10.3938/jkps.57.863
  19. A. M. Sanchez, M. Sanz, R. Prieto, J. A. Oliver, P. Alou, and J. A. Cobos , IEEE Trans. Ind. Electron., 55, 1 (2008).
  20. J. L. Jones, B. J. Iverson, and K. J. Bowman, J. Am. Ceram. Soc., 90, 2297 (2007). https://doi.org/10.1111/j.1551-2916.2007.01820.x

Cited by

  1. Piezoelectric and dielectric properties of 0.98(Na0.5K0.5)NbO3–0.02Ba(ZrxTi(1−x))O3 ceramics vol.47, pp.10, 2012, https://doi.org/10.1016/j.materresbull.2012.04.095
  2. High Efficiency Step-Down Flyback Converter Using Coaxial Cable Coupled-Inductor vol.13, pp.2, 2013, https://doi.org/10.6113/JPE.2013.13.2.214
  3. Graphene nanoplatelet-silica hybrid epoxy composites as electrical insulation with enhanced thermal conductivity 2017, https://doi.org/10.1002/pc.24666
  4. Electrical and Structural Properties of 0.98(Na0.5K0.5)NbO3–0.02Ba(Zr0.52Ti0.48)O3Ceramics with CuO Content vol.51, pp.7R, 2012, https://doi.org/10.7567/JJAP.51.075802
  5. Electrical properties of lead-free 0.98(Na0.5K0.5Li0.1)NbO3-0.02Ba(Zr0.52Ti0.48)O3 ceramics by sintering temperature vol.8, pp.3, 2012, https://doi.org/10.1007/s13391-012-2002-5
  6. Piezoelectric Properties of ZnO-Doped 0.98(Na0.5K0.5)NbO3-0.02Ba(Zr0.52Ta0.48)O3 Ceramics vol.140, pp.1, 2012, https://doi.org/10.1080/10584587.2012.741865
  7. Dielectric and piezoelectric properties of 0.95(Na0.5K0.5)NbO3-0.05CaTiO3 ceramics with Ag2O contents vol.8, pp.6, 2012, https://doi.org/10.1007/s13391-012-2072-4
  8. Effect of sintering temperatures on the piezoelectric and dielectric properties of 0.98(Na0.5K0.5)NbO3-0.02(Ba0.5Ca0.5)TiO3 ceramics vol.9, pp.2, 2013, https://doi.org/10.1007/s13391-012-2160-5