• Title/Summary/Keyword: Heat and mass transfer performance

Search Result 331, Processing Time 0.022 seconds

Dehumidifying Performance of Material-Saving Fin in Fin-tube Heat Exchanger (흰-관 열교환기에서 재료절감 흰의 제습특성)

  • 강희찬;김무환
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.8
    • /
    • pp.730-738
    • /
    • 2001
  • This work discusses the pressure droop, heat and mass transfer of the finned-tube heat exchangers having 7 mm tubes and offset strips in dehumidifying applications. It focuses on the fin material saving and the reduction of pressure drop. The experiment was conducted using three times scaled-up models to simulate the performance of the prototype. Eight kinds of fins having different strips and S shape edges were tested. the area density of the strip was a major factor and its shape and the location were secondary factors on the pressure drop, the heat and mass transfer. The reduced-area fin can almost equal the non-reduced fin in the aspect of heat and mass transfer. The strip fins proposed in the present work can considerably reduce both the pressure drop and the fin material for similar thermal load.

  • PDF

Some Aspects of Experimental in-Tube Evaporation

  • Ha, Sam-Chul
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.5
    • /
    • pp.537-546
    • /
    • 2000
  • The heat transfer characteristics of refrigerant-oil mixture for horizontal in-tube evaporator have been investigated experimentally. A smooth copper tube and a micro-fin tube with nominal 9.5 mm outer diameter and 1500 mm length were tested. For the pure refrigerant flow, the dependence of the axial heat transfer coefficient on quality was weak in the smooth tube, but in the micro-fin tube, the coefficients were 3 to 10 times greater as quality increases. Oil addition to pure refrigerant in the smooth tube altered the flow pattern dramatically at low mass fluxes, with a resultant enhancement of the wetting area by vigorous foaming. The heat transfer coefficients of the mixture for low and medium qualities were increased at low mass fluxes. In the micro-fin tube, however, the addition of oil deteriorates the local heat transfer performance for most of the quality range, except for low quality. The micro-fin tube consequently loses its advantage of high heat transfer performance for an oil fraction of 5%. Results are presented as plots of local heat transfer coefficient versus quality.

  • PDF

Analysis of a Wet Surface Finned-tube Evaporator of an Air Source Heat Pump

  • Baik, Young-Jin;Chang, Young-Soo;Kim, Young-Il
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.10 no.4
    • /
    • pp.211-219
    • /
    • 2002
  • In this study, in-situ performance test of a wet surface finned-tube evaporator of an air source heat pump which has a rating capacity of 20 RT is carried out. Since test conditions, such as indoor and outdoor air conditions cannot be controlled to satisfy the standard test conditions, experiments are done with the inlet air conditions as they exist. From the experimental data, air side heat and mass transfer coefficients were calculated by the well known heat and mass transfer analogy and tube-by-tube method. Since current procedure underpredicted the experimental sensible heat factor (SHF), a proper empirical parameter was introduced to predict the experimental data with satisfactory results. This study provides the method of evaluating the heat and mass transfer coefficients of a wet surface finned-tube evaporator of which in-situ performance test is necessary.

Effects of Rib Cross Section Shapes on Heat Transfer of a Rib-Roughened Duct (터빈 기익 내부관 열전달 증대를 위해 설치된 요철의 형상 효과)

  • Wu, Seong Je;Kwon, Hyuk Jin;Cho, Hyung Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.1
    • /
    • pp.149-157
    • /
    • 1999
  • Heat transfer in a duct is augmented remarkably by rib turbulators. However, increasing friction loss is accompanied due to ribs disturbing flows. Hence, pressure drops and heat transfer are considered simultaneously to decide heat/mass transfer performance in a rib-roughened duct. In the present study, the effects of rib cross section shape on pressure drop through a duct are investigated as well as those on heat transfer characteristics. The results show that the characteristics of heat/mass transfer and friction loss in the duct roughened with triangular ribs are similar to those with square ribs, while significantly different from those with semicircular ribs. The best performance in the duct is obtained by using semicircular shaped ribs among three types of ribs for the large rib angles of ${\alpha}{\geq}63^{\circ}$.

A Study on the Heat Recovery Performance of Water Fludized-Bed Heat Exchanger (물유동층 열교환기의 열회수성능 연구)

  • 김한덕;박상일;이세균
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.8
    • /
    • pp.690-696
    • /
    • 2003
  • This paper presents the heat recovery performance of water fluidized-bed heat exchanger. Temperature and humidity ratio of waste gas are considered as important parameters in this study. Therefore, the heat recovery rate through water fluidized-bed heat exchanger for exhaust gases with various temperatures and humidity ratios can be estimated from the results of this study. Mass flow ratio (the ratio of mass flow rate of water to that of gas) and temperature of inlet water are also considered as important operating variables. Increase of heat recovery rate can be obtained through either high mass flow ratio or low temperature of inlet water with resultant low recovered temperature. The heat recovery performance with the mass flow ratio of about up to 10 has been investigated. The effect of number of stages of water fluidized-bed on the heat recovery performance has been also examined in this study.

Numerical Study of Characteristic of Heat and Mass Transfer in Planar Membrane Humidifier According to Flow Direction (연료전지용 판형 막 가습기의 유동방향에 따른 열 및 물질전달 특성에 관한 해석적 연구)

  • Yun, Sungho;Byun, Jae Ki;Choi, Young Don
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.5
    • /
    • pp.503-511
    • /
    • 2013
  • The humidifying supply gas is important in terms of the performance efficiency and membrane life improvement of a PEM fuel cell. A planar membrane humidifier is classified as a cross-flow and counter-flow type depending on the flow direction, and heat and mass transfer occur between the plate and the membrane. In this study, the changes in heat and mass transfer for various inlet temperatures and flow rates are compared according to the flow direction by using the sensible and latent ${\varepsilon}$-NTU method. The obtained results indicate that the counter flow shows higher heat and mass transfer performance than the cross flow at a low flow rate, and the difference in performance decreases as the flow rate increases. Furthermore, changes in the mass transfer performance decrease considerably with a nonlinear increase in the inlet temperature, and variations of the heat transfer performance are small.

Heat/Mass Transfer on Effusion Plate with Circular Pin Fins for Impingement/Effusion Cooling System with Intial Crossflow (초기 횡방향 유동이 존재하는 충돌제트/유출냉각에서 원형핀이 설치된 유출면에서의 열/물질전달 특성)

  • Hong Sung Kook;Rhee Dong-Ho;Cho Hyung Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.7 s.238
    • /
    • pp.828-836
    • /
    • 2005
  • Impingement/effusion cooling technique is used for combustor liner or turbine parts cooling in gas turbine engine. In the impingement/effusion cooling system, the crossflow generated in the cooling channel induces an adverse effect on the cooling performance, which consequently affects the durability of the cooling system. In the present study, to reduce the adverse effect of the crossflow and improve the cooling performance, circular pin fins are installed in impingement/effusion cooling system and the heat transfer characteristics are investigated. The pin fins are installed between two perforated plates and the crossflow passes between these two plates. A blowing ratio is changed from 0.5 to 1.5 for the fixed jet Reynolds number of 10,000 and five circular pin fin arrangements are considered in this study. The local heat/mass transfer coefficients on the effusion plate are measured using a naphthalene sublimation method. The results show that local distributions of heat/mass transfer coefficient are changed due to the installation of pin fins. Due to the generation of vortex and wake by the pin fin, locally low heat/mass transfer regions are reduced. Moreover, the pin fin prevents the wall jet from being swept away, resulting in the increase of heat/mass transfer. When the pin fin is installed in front of the impinging let, the blockage effect on the crossflow enhances the heat/mass transfer. However, the pin fin installed just behind the impinging jet blocks up the wall jet, decreasing the heat/mass transfer. As the blowing ratio increases, the pin fins lead to the higher Sh value compared to the case without pin fins, inducing $16\%{\~}22\%$ enhancement of overall Sh value at high blowing ratio of M=1.5.

Study on High Performance and Compact Absorber Using Small Diameter Heat Exchanger Tube

  • Yoon Jung-In;Phan Thanh Tong;Moon Choon-Geun;Kim Eun-Pil;Kim Jae-Dol;Kang Ki-Cheol
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.4
    • /
    • pp.463-473
    • /
    • 2006
  • The effect of tube diameter on heat and mass transfer characteristics of absorber in absorption chiller/heater using LiBr solution as a working fluid has been investigated by both of numerical and experimental study to develop a high performance and compact absorber. The diameter of the heat exchanger tube inside absorber was changed from 15.88mm to 12.70mm and 9.52mm. In numerical study a model of vapor pressure drop inside tube absorber based on a commercial 20RT absorption chiller/heater was performed. The effect of tube diameter, longitudinal pitch, vapor Reynolds number, longitudinal pitch to diameter ratio on vapor pressure drop across the heat exchanger tube banks inside absorber have been investigated and found that vapor pressure drop decreases as tube diameter increases, longitudinal pitch increases, vapor Reynolds number decreases and longitudinal pitch to diameter ratio increases. In experimental study, a system includes a tube absorber, a generator, solution distribution system and cooling water system was set up. The experimental results shown that the overall heat transfer coefficient, mass transfer coefficient. Nusselt number and Sherwood number increase as solution flow rate increases. In both of study cases, the heat and mass transfer performance increases as tube diameter decreases. Among three different tube diameters the smallest tube diameter 9.52mm has highest heat and mass transfer performance.

A Review of Heat and Mass Transfer Analysis for Absorption Process

  • Kim, Jin-Kyeong;Kang, Yong-Tae
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.14 no.4
    • /
    • pp.131-137
    • /
    • 2006
  • The absorber in which heat and mass transfer phenomena occur simultaneously is one of the most critical components in the absorption system. It has the most significant influence on the performance and the size of the absorption system. During the absorption process, heat and mass transfer resistances exist in both liquid and vapor regions, so that the heat transfer mode should be carefully selected to reduce them. The objective of this paper is to review the previous papers analysing mathematical models of simultaneous heat and mass transfer phenomena during the absorption process. The most conventional working fluids ($H_2O$LiBr and $NH_3/H_2O$) are considered and the most common absorption modes (falling film and bubble mode) are dealt with in this review.

Effects of Discrete Rib-Turbulators on Heat/Mass Transfer Augmentation in a Rectangular Duct (사각 덕트 내부 열전달 향상을 위한 요철의 단락 효과)

  • Kwon, Hyuk-Jin;Wu, Seong-Je;Cho, Hyung-Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.5
    • /
    • pp.744-752
    • /
    • 2000
  • The influence of arrangement and length of discrete ribs on heat/mass transfer and friction loss is investigated. Mass transfer experiments are conducted to obtain the detailed local heat/mass transfer information on the ribbed wall. The aspect ratio (width/height) of the duct is 2.04 and the rib height is one tenth of the duct height, such that the ratio of the rib height to hydraulic diameter is 0.0743. The ratio of rib-to-rib distance to rib height is 10. The discrete ribs were made by dividing each continuous rib into 2, 3 or 5 pieces and attached periodically to the top and the bottom walls of the duct with a parallel orientation The combined effects of rib angle and length of the discrete ribs on heat/mass transfer ae considered for the rib angles $({\alpha})\;of\;90^{\circ}\;and\;45^{\circ}$. As the number of the discrete ribs increases, the uniformity of the heat/mass transfer distributions increases. For $(\alpha})=90^{\circ}$, the heat/mass transfer enhancement with the discrete ribs is remarkable, while the heat/mass transfer performances are slightly higher than that of the transverse continuous ribs due to the accompanied high friction loss penalty. For $(\alpha})=90^{\circ}$, the average heat/mass transfer coefficients and the heat/mass transfer performances decrease slightly with the discrete ribs compared to the case of the angled continuous ribs.