• Title/Summary/Keyword: Heat aging

Search Result 578, Processing Time 0.023 seconds

Effect of Thermal Aging on The Strength of Laminate Composites Structure (라미네이트 강도 특성에 미치는 Thermal Aging의 영향)

  • 정연운;김국진;한중원;김윤해
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.10a
    • /
    • pp.24-28
    • /
    • 2002
  • Composite reinforced fiber materials are used in lots of fields such as a part of aeronautic space, ship, machinery and so on because can make structure wished for necessary condition by control fiber direction and laminated sequence. As the use of advanced composites increase, specific techniques have been developed to repair changed composite structures. In order to repair the damaged part production high quality composite reinforced fiber are completed by control the surrounding temperature and press in autoclave. The quality is influenced heat exposure degree by chemical reaction for precessing. This study considerated influence limit of using by repair structure part and change of properties according to heat exposure degree for repairing.

  • PDF

The softening behavior of Mg-Li-Al(-Zr) alloys (Mg-Li-Al(-Zr) 합금의 연화현상)

  • Kim, Y.W.;Kwang, Y.H.;Lim, Y.J.;Kim, D.H.;Hong, C.P.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.11 no.1
    • /
    • pp.10-16
    • /
    • 1998
  • The softening behavior of squeeze cast Mg-Li-Al and Mg-Li-Al-Zr alloys have been investigated. The highest hardness values of Mg-Li-Al and Mg-Li-Al-Zr alloys were obtained after solution treatment at $400^{\circ}C$ for 1 hour. The hardness value, however, decreased as the aging temperature and time increased. Microstructural and calorometric analyses showed that quenched-microstructure changed from primary (${\alpha}$ and ${\beta}$)+secondary ${\alpha}$ to primary(${\alpha}$ and ${\beta}$)+secondary ${\alpha}+{\theta}$ after aging. The softening during aging was due to the coarsening of ${\theta}$ precipitates.

  • PDF

Effects of Maximum Strain and Aging Conditions on the Fatigue Life of Vulcanized Natural Rubber (가황 천연고무의 피로수명에 미치는 최대 변형률과 노화도 영향)

  • 우창수;김완두;김완수;권재도
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.4
    • /
    • pp.181-190
    • /
    • 2004
  • The interest of the fatigue life of rubber components such as engine mounts is increasing according to the extension of warranty period of the automotive components. Automotive engine mounts get damaged due to thermal and mechanical loadings. This paper discusses a fatigue life prediction of the 3-dimensional dumbbell specimens for natural rubber compound considering the effects of maximum strain and heat aging temperature. Displacement controlled fatigue life tests were performed using specimens with different levels of maximum strain and various hardness. The basic mechanical properties test and the fatigue test of aged rubber specimen under normal and elevated temperature were executed. A procedure to predicted the fatigue life of vulcanized natural rubber material based on the maximum strain method was proposed, and then this curve was in good agreement with fatigue test data less than 200% error range.

The Study on the Migration of Carbon in T23/T91 Dissimilar Metal Welds for Boiler (보일러용 T23/T91 이종용접부의 탄소이동에 관한 연구)

  • Park, Ki-Duck;Jung, Byong-Ho;Kang, Chang-Yong
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.27 no.6
    • /
    • pp.288-294
    • /
    • 2014
  • The study on the migration of carbon in T23/T91 dissimilar metal welds for the boiler was conducted at $600^{\circ}C$ with an increase of aging time from 1 to 100 hrs. Following results were obtained. The heavily etched dark band tended to increase from a molten boundary owing to an increase of aging time, which leads to form hard (T91) and soft (T23) zones with different hardness. It was found that carbon was migrated from T23 area to T91 area due to different carbon activities. In addition, soft and hard zones were formed in regional area mainly resulted from carbide dissolutions and precipitates.

Microstructure and Properties of Mg-RE-Zn Alloys for High Conductivity Parts (고전도성 부품용 Mg-RE-Zn계 합금의 미세조직 및 특성)

  • Kim, Jeong-Min;Kim, Nam-Hoon
    • Journal of Korea Foundry Society
    • /
    • v.34 no.5
    • /
    • pp.151-155
    • /
    • 2014
  • The relatively low conductivity of conventional Mg-Al alloys often limits their areas of application. Therefore, several attempts to develop new high-conductivity magnesium alloys have been made recently. In this research, A Ce-rich rare-earth (RE)material and zinc were added to magnesium which contained no aluminum. As the RE and Zn content were increased, both the hardness and tensile strength were gradually increased, despite the fact that the electrical conductivity decreased slightly. The effects of an aging treatment on the conductivity and mechanical properties of Mg-RE-Zn alloys were also investigated. The electrical conductivity did not change according to the heat treatment conditions; however, the mechanical properties could be enhanced by proper aging heat treatments.

Changes in Hardness and Damping Capacity of Aged Mg-5%Sn Alloy (시효한 Mg-5%Sn 합금의 경도와 진동감쇠능 변화)

  • Jun, Joong-Hwan
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.35 no.5
    • /
    • pp.255-261
    • /
    • 2022
  • In this work, the strain-amplitude independent and strain-amplitude dependent damping capacities of Mg-5%Sn alloy have been investigated as a function of its age-hardening response. The hardness increased with an increase in aging time, reached a peak value after 48 h, and then it gradually decreased. The damping capacities of the Mg-5%Sn alloy exhibited a decreasing tendency in the order of solution-treated, under-aged, peakaged, and over-aged states in the strain-amplitude dependent region, whereas they increased continuously with aging time in the strain-amplitude independent region. The microstructural examination during aging revealed that the lower concentration of Sn solutes in the α-(Mg) matrix and the lower density of the Mg2Sn precipitate particles may well be the crucial factors for better damping values in the strain-amplitude independent and strain-amplitude dependent regions, respectively.

Microstructure and Mechanical Properties of Strip Casted Ag-27%Cu-25%Zn-3%Sn Brazing Alloy (브레이징용 Ag-27%Cu-25%Zn-3%Sn 박판 주조 스트립의 미세조직 및 기계적 특성 연구)

  • Kim, S.J.;Kim, M.C.;Lee, K.A.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.313-316
    • /
    • 2008
  • This work sought to examine the suitability of twin roll strip casting for Ag-27%Cu-25%Zn-3%Sn brazing alloy (BAg-7A) and to investigate the mechanical properties and microstructure of the strip. The effect of aging heat treatment on the properties was also studied,. This new manufacturing process has applications in the production of the brazing alloy. XRD and microstructural analysis of the Ag-27%Cu-25%Zn-3%Sn strip represented eutectic microstructure of a Cu-rich phase and a Ag-rich matrix regardless of heat treatment. The results of mechanical tests showed tensile strength of 470MPa, a significant enhancement, and an 18% elongation of the twin roll casted strip, due mainly to the solid solution strengthening of Zn atoms (${\sim}20%$) in the Cu-rich phases. Tensile results showed gradually decreasing strengths and increasing elongation with aging heat treatment. Microstructural evolution and fractography were also investigated and related to the mechanical properties.

  • PDF

Mechanical and Physical Property Changes of Cu-Ni-Si-Sn-Fe-P Copper Alloy System According to the Heat Treatment Conditions (열처리조건에 따른 Cu-Ni-Si-Sn-Fe-P 석출경화형 동합금계의 물성변화 특성)

  • Kim, Seung-Ho;Yum, Young-Jin
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.26 no.5
    • /
    • pp.225-232
    • /
    • 2013
  • The influence of aging treatment, addition elements and rolling reduction ratio on the microstructure, mechanical, electrical and bendability properties of Cu-Ni-Si-P-x (x = Fe, Sn, Zn) alloys for connector material application was investigated. SEM/EDS analysis exhibited that Ni2-Si precipitates with a size of 20~100 nm were distributed in grains. Fe, Sn, Zn elemnets in Cu-Ni-Si-P alloy imporved the mechanical strength but it was not favor in increasing of electrical conductivity. As higher final rolling reduction ratio, the strength and electrical conductivity is increased after aging treatment, but it indicated excellent bendability. Especially, Cu-2Ni-0.4Si-0.5Sn-0.1Fe-0.03P alloy show the tensile strength value of 700MPa and the electrical conductivity was observed to reach a maximum of 40%IACS. It is optimal for lead frame and connector.

The Effect of Heat Treatment on the Martensitic Transformation in an Cu-Al-Ni Single Crystal (Cu-Al-Ni계 단결정 합금의 마르텐사이트 변태특성에 미치는 열처리의 영향)

  • Kim, Y.S.;Jang, W.Y.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.13 no.3
    • /
    • pp.177-182
    • /
    • 2000
  • The effects of betatizing and aging temperatures on the martensitic transformation characteristics in an Cu-13.4wt%Al-4.2wt%Ni single crystal have been studied. Microstructures show that the specimen betatized above $800^{\circ}C$ has only ${{\beta}_1}^{\prime}$ martensite while the specimen betatized of below $700^{\circ}C$ has two phases i.e., ${{\beta}_1}^{\prime}+{\gamma}_2$ When betatizing temperature increase from $600^{\circ}C$ upto $900^{\circ}C$, Ms and As temperatures decrease due to the dissolution of which ${\gamma}_2$ phase depletes Al content in the matrix thereafter makes the both Ms and As temperatures significantly increased. Ms and As temperatures of the specimen aged at $200^{\circ}C$ are relatively stable but those of the specimen aged at $300^{\circ}C$ are shifted rapidly with aging time, especially within the first 30min.

  • PDF

Effects of Co-agent Type and Content on Curing Characteristics and Mechanical Properties of HNBR Composite

  • Lee, Young Seok;Ha, KiRyong
    • Elastomers and Composites
    • /
    • v.55 no.2
    • /
    • pp.95-102
    • /
    • 2020
  • Currently, peroxide cure is a widely used cure system for rubber materials. To improve its effectivity, co-agents are used to enhance the peroxide efficiency and mechanical properties of rubber materials. Co-agents are multifunctional organic compounds that are highly reactive towards free radicals. These co-agents provide higher cross-link densities for a given peroxide concentration and improve the mechanical properties of peroxide-cured rubber composites. In this study, trimethylolpropane trimethacrylate (TMPTMA) and high vinyl 1,2-polybutadiene (HVPBD) were used as co-agents. In order to obtain a concentration that achieves a favorable balance between mechanical properties and co-agent concentration, this research investigated the effects of co-agent content on the curing characteristics, chemical structures, and mechanical properties of HNBR composites. Additionally, the heat aging properties and compression sets of HNBR composites were investigated. Based on the results, we found that the HNBR composites with TMPTMA co-agents exhibited higher Shore A hardness and 10% modulus and better heat aging resistance and compression set than that of the HVPBD co-agent. The heat aging resistance and compression set deteriorated with increasing HVPBD content.