Browse > Article
http://dx.doi.org/10.12656/jksht.2022.35.5.255

Changes in Hardness and Damping Capacity of Aged Mg-5%Sn Alloy  

Jun, Joong-Hwan (Industrial Materials Processing R&D Department, Korea Institute of Industrial Technology)
Publication Information
Journal of the Korean Society for Heat Treatment / v.35, no.5, 2022 , pp. 255-261 More about this Journal
Abstract
In this work, the strain-amplitude independent and strain-amplitude dependent damping capacities of Mg-5%Sn alloy have been investigated as a function of its age-hardening response. The hardness increased with an increase in aging time, reached a peak value after 48 h, and then it gradually decreased. The damping capacities of the Mg-5%Sn alloy exhibited a decreasing tendency in the order of solution-treated, under-aged, peakaged, and over-aged states in the strain-amplitude dependent region, whereas they increased continuously with aging time in the strain-amplitude independent region. The microstructural examination during aging revealed that the lower concentration of Sn solutes in the α-(Mg) matrix and the lower density of the Mg2Sn precipitate particles may well be the crucial factors for better damping values in the strain-amplitude independent and strain-amplitude dependent regions, respectively.
Keywords
Mg-Sn alloy; Damping capacity; Age-hardening response; Granato-Lucke (G-L) model; Hardness;
Citations & Related Records
연도 인용수 순위
  • Reference
1 G. Nayyeri and R. Mahmudi : Mater. Sci. Eng. A, 527 (2010) 669.
2 T. T. Sasaki, K. Oh-ishi, T. Ohkubo, and K. Hono : Scr. Mater., 55 (2006) 251.   DOI
3 C. Wang, Z. Cui, H. Liu, Y. Chen, W. Ding, and S. Xiao : Mater. Des., 84 (2015) 48.   DOI
4 A. Granato and K. Lucke : J. Appl. Phys., 27 (1956) 789.   DOI
5 D. H. Rogers : J. Appl. Phys., 33 (1962) 781.   DOI
6 Z. Zhang, X. Zeng, and W. Ding : Mater. Sci. Eng. A, 392 (2005) 150.   DOI
7 D. H. Kang, S. S. Park, and N. J. Kim : Mater. Sci. Eng. A, 413-414 (2005) 555   DOI
8 Y. Huang, H. Dieringa, K. U. Kainer, and N. Hort : Fatigue Fract. Eng. Mater. Struct., 36 (2012) 308.
9 G. Nayyeri and R. Mahmudi : Mater. Sci. Eng. A, 527 (2010) 4613.
10 H. Okamoto : Desk Handbook Phase Diagrams for Binary Alloys, ASM International, Materials Park, OH, 2000.
11 S. Wei, Y. Chen, Y. Tang, X. Zhang, M. Liu, S. Xiao, and Y. Zhao : Mater. Sci. Eng. A, 508 (2009) 59.
12 G. Nayyeri, R. Mahmudi, and F. Salehi : Mater. Sci. Eng. A, 527 (2010) 5353.   DOI
13 J. Song, J. She, D. Chen, and F. Pan : J. Magnes. Alloy., 8 (2020) 1.   DOI
14 S. Li, X. Yang, J. Hou, and W. Du : J. Magnes. Alloy., 8 (2020) 78.
15 K. Sugimoto, K. Niiya, T. Okamoto, and K. Kishitake : Trans. JIM, 18 (1977) 277.   DOI
16 C. R. Hutchinson, J. F. Nie, and S. Gorsse : Metall. Mater. Trans. A, 36A (2005) 2093.
17 A. A. Luo : Int. Mater. Rev., 49 (2004) 13.   DOI
18 A. K. Dahle, D. H. StJohn, and G. L. Dunlop : Mater. Forum, 24 (2000) 167.
19 B. L. Mordike and T. Ebert : Mater. Sci. Eng. A, 302 (2001) 37.   DOI
20 A. Luo and A. Sachdev : Int. J. Metalcast., 4 (2010) 51.
21 H. Liu, Y. Chen, Y. Tang, S. Wei, and G. Niu : J. Alloy. Compd., 440 (2007) 122.   DOI
22 S. Wei, Y. Chen, Y. Tang, H. Liu, S. Xiao, G. Niu, X. Zhang, and Y. Zhao : Mater. Sci. Eng. A, 492 (2008) 20.   DOI
23 S. Jayalakshmi, S. Sankaranarayanan, S. P. X. Koh, and M. Gupta : J. Alloy. Compd., 565 (2013) 56.   DOI
24 N. Hort, Y. Huang, T. A. Leil, P. Maier, and K. U. Kainer : Adv. Eng. Mater., 8 (2006) 359.   DOI
25 A. Granato and K. Lucke : J. Appl. Phys., 27 (1956) 583.   DOI
26 F. Povolo : Scr. Metall., 9 (1975) 865.
27 J. H. Jun : Mater. Trans., 55 (2014) 1903.   DOI