• Title/Summary/Keyword: Heat Transfer performance

Search Result 1,897, Processing Time 0.033 seconds

Comparative Research on the Carbon Dioxide Liquefaction Using Several Refrigerants (몇 가지 냉매를 사용한 이산화탄소 액화에 대한 비교 연구)

  • ILSU PARK;PHILSUNG HWANG;KICHEOL JUNG;JUNESHU ANH;JUNGHO CHO
    • Journal of Hydrogen and New Energy
    • /
    • v.34 no.2
    • /
    • pp.226-233
    • /
    • 2023
  • In this study, we compared the performance of several refrigeration cycles using different refrigerants and utilizing the cold heat of liquefied natural gas (LNG) for the liquefaction of carbon dioxide. The final conditions for the liquefied CO2 were set to -20℃ and 20 bar. The refrigerants used included R404a, ammonia, propane, and propylene using a vapor recompression refrigeration cycle. For the refrigeration cycle, the CO2 at room temperature and pressure was compressed in a two-stage compression process with an intermediate cooling stage using a refrigeration unit. To compare with the liquefaction process using refrigeration, we compressed the CO2 to 8 bar in a single compression stage and cooled it to around -50℃ using the cold heat of the LNG before liquefying it. Results showed that using ammonia as the refrigerant required the least amount of compressor power for the liquefaction process, and the heat transfer area of the evaporator was the smallest when using propylene as the refrigerant. Using the cold heat of LNG instead of refrigeration using R404a resulted in approximately 69% less energy consumption.

Parametric Sensitivity of the Flow Characteristics on Pulverized Coal Gasification (유동변수들이 석탄가스화에 미치는 민감도에 대한 수치적연구)

  • Cho, Han-Chang;Shin, Hyun-Dong
    • Journal of the Korean Society of Combustion
    • /
    • v.4 no.1
    • /
    • pp.1-15
    • /
    • 1999
  • In order to analyze the sensitivity on the pulverized coal flames of the several variables, a numerical study was conducted at the gasification process. Eulerian approach is used for the gas phase, whereas lagrangian approach is used for the solid phase. Turbulence is modeled using the standard $k-{\varepsilon}$ model. The turbulent combustion incorporates eddy dissipation model. The radiation was solved using a Monte-Carlo method. One-step two-reaction model was employed for the devolatilization of Kideco coal. In pulverized flame of long liftoff height, the initial turbulent intensity seriously affects the position of flame front. The radiation heat transfer and wall heat loss ratio distort the temperature distributions along the reactor wall, but do not influence the reactor performance such as coal conversion, residence time and flame front position. The primary/secondary momentum ratio affects the position of flame front, but the coal burnout is only slightly influenced. The momentum ratio is a variable only associated with the flame stabilization such as flame front position. The addition of steam in the reactor has a detrimental effect on all the aspects, particularly reactor temperature and coal burnout.

  • PDF

An Experimental Study on the Performance of Air/Water Direct Contact Air Conditioning System

  • Yoo, Seong-Yeon;Kwon, Hwa-Kil
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.6
    • /
    • pp.1002-1009
    • /
    • 2004
  • Direct contact air conditioning systems, in which heat and mass are transferred directly between air and water droplets, have many advantages over conventional indirect contact systems. The purpose of this research is to investigate the cooling and heating performances of direct contact air conditioning system for various inlet parameters such as air velocity, air temperature, water flow rate and water temperature. The experimental apparatus comprises a wind tunnel, water spray system, scrubber, demister, heater, refrigerator, flow and temperature controller, and data acquisition system. The inlet and outlet conditions of air and water are measured when the air contacts directly with water droplets as a counter flow in the spray section of the wind tunnel, and the heat and mass transfer rates between air and water are calculated. The droplet size of the water sprays is also measured using a Malvern Particle Analyzer. In the cooling conditions, the outlet air temperature and humidity ratio decrease as the water flow rate increases and as the water temperature, air velocity and temperature decrease. On the contrary, the outlet air temperature and humidity ratio increase in the heating conditions as the water flow rate and temperature increase and as the air velocity decreases.

Process Analysis and Die Design for Al3003 Condenser Tube Extrusion with 12 Cell (Al3003 12셀 컨덴서 튜브의 압출을 위한 공정해석 및 금형설계)

  • Lee, Sang-Ho;Lee, Jung-Min;Jo, Hyung-Ho;Jo, Hoon;Kim, Mun-Bae;Kim, Byung-Min
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.11
    • /
    • pp.44-51
    • /
    • 2007
  • Condenser tubes are mainly produced by precision extrusion with a porthole die and are used in the flow pass of refrigerant cooling systems in automobiles. The recent technical trend of condenser tube requires the tube to be of more multi cellizing, high strength and small size, and to increase the heat transfer area and heat efficiency. Hence, this paper is shown that the results of FE-simulation are in good agreement with the experimental ones. Finally, the extrusion die shape is proposed through analysis of FE-simulation and performance of trial extrusion. Chamber shape dimension and initial temperatures of die is adjusted analysis results. And the possibility of extrusion is estimated that forming load, welding pressure and stress analysis of die in this paper. The validity of simulated results was verified into extrusion experiments on the condenser tubes.

Micro-Heatsink Fabricated by Electroless Plating (무전해 도금으로 제조한 마이크로 히트싱크)

  • An Hyun Jin;Son Won Il;Hong Joo Hee;Hong Jae-Min
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.11 no.2 s.31
    • /
    • pp.11-16
    • /
    • 2004
  • Electronic devices are getting smaller due to integration of electronic chip, and heat generated in electronic devices can cause loss of performance and/or reliability of the devices. In this research, metals such as gold, nickel and copper are plated onto a porous membrane by electroless plating method to make an efficient micro-heatsinks. Electroless plating includes sensitization and activation steps in pre-treatment steps. A polycarbonate(PC) membrane was sensitizied, activated and deposited in each metal solution for plating. Among manufactured microfibrils, heat transfer and radiation properties of Ni-microfibril with high surface area were more effective than those of $Au^-$ and Cu-microfibril.

  • PDF

Design and Performance Evaluation of Visualization System for Measuring the Void Fraction of Two-phase Flow (다상 유동 Void Fraction 가시화 장치 설계 및 성능 평가)

  • Choi, Chang-Hyun;Choi, Seong-Won;Song, Simon
    • Journal of the Korean Society of Visualization
    • /
    • v.15 no.1
    • /
    • pp.11-18
    • /
    • 2017
  • A two-phase flow observed in a heat exchanger or nuclear power generation often has a profound effect on undesirable noise or flow characteristics. Void fraction, which refers to the ratio of gas (or liquid) to the total fluid, affects heat transfer coefficient, vibration and so forth. In other words, void fraction is one of most important parameters in two-phase flow since it contributes to comprehend the characteristics of two-phase flow. We developed a two-phase flow visualization system to measure cross-sectional and volumetric void fractions by using quick closing valves and image processing software. With this system, we could observe the plug, slug, and stratified flow patterns of two-phase flow and measure a myriad of void fractions. As a consequence of the experiment, we found that the estimated void fractions were largely coincident with the predictive values by Chisholm model.

A Study on Fuzzy Control Simulator of Naturally Circulated Boiler (자연 순환식보일러의 퍼지제어 모사기 개발에 관한 연구)

  • Kim, Kwang-Sun;Kim, Sam-Un
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.4
    • /
    • pp.543-554
    • /
    • 2000
  • The engineering equations, which have been used in many engineering companies, were employed for the dynamic modelling part in order to develop the naturally circulated boiler simulator. The fuzzy algorithm, which is similar to the algorithm of making decision by the human being, was developed for the boiler simulator controller and its simulated variables were compared with those of classical PID simulations to verify the stability and the effectiveness of fuzzy controller. The simulator is for the naturally circulated boiler and the main components are the furnace, the drum, the super heater, and the economizer. The combustion and thermal radiation dominant equations were used within the furnace and the mass conservation and the energy rate balance equations were employed for the drum part. The heat transfer rates were calculated using the logarithmic mean temperature differences both for the super heater and for the economizer. The simulations are very useful to understand the boiler operations and the engineering design of the main components. The main program was developed under the PC window condition by linking the fuzzy controller to the main boiler program using the Visual C++ language. The various operational conditions such as the abrupt changes of load, the changes of water supply pipes and the diameter of drum were simulated.

The Flow Characteristics of Pressure Control Valves for Natural Refrigerants (천연 냉매용 압력제어밸브의 유동특성 평가)

  • Kang, Hyo-Lim;Park, Hyung-Joon;Kim, Ga-Eun;Han, Seung-Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.3
    • /
    • pp.51-56
    • /
    • 2020
  • Research into natural refrigerants that use CO2, instead of chlorofluorocarbons and hydrofluorocarbons, has increased due to the environmental problems caused by ozone depletion. CO2 refrigerants are more environmentally friendly than conventional refrigerants because they have better latent heat of evaporation and heat transfer efficiency properties. However, they have very low critical temperatures and require high design pressures; therefore, pressure control valves, which reduce the pressure of the CO2 refrigerant to a safe level and apply it to the refrigerant air conditioning system, are necessary to secure stability against high pressure. In the present study, we evaluated the flow characteristics and valve performance of the pressure control valve using a CO2 refrigerant by measuring the pressure, velocity, and flow coefficient. In addition, we examined the applied forces caused by the internal pressure from the highly pressurized CO2 refrigerant and required thrust characteristics.

Thermal Flow Analysis of Operating Parameters in Autothermal Reformer (자열개질기의 운용조건에 따른 열유동 수치해석)

  • Park, Seung-Hwan;Kim, Jin-Wook;Park, Dal-Yung;Kim, Jae-Dong;Lee, Do-Hyung
    • The KSFM Journal of Fluid Machinery
    • /
    • v.14 no.6
    • /
    • pp.61-67
    • /
    • 2011
  • The study is to analyze the chemical and heat-flow reactions in the hydrogen generation unit(autothermal reformer), using computational numerical tools. Autothermal reformer(ATR) is involved in complex chemical reaction, mass and heat transfer due to exothermic and endothermic reactions. Therefore it is necessary to reveal the effects of various operation parameters and geometries on the ATR performance by using numerical analysis. Numerical analysis needs to dominant chemical reactions that includes Full Combustion(FC) reaction, Steam Reforming(SR) reaction, Water-Gas Shift(WGS) reaction and Direct Steam Reforming(DSR) reaction. The objective of the study is to improve theoretically the reformer design capability for the goal of high hydrogen production in the autothermal reformer using methane. Hydrogen production reached maximum in a certain value of Oxygen to Carbon Ratio(OCR) or Steam to Carbon Ratio(SCR). When the longitudinal distance to dimeter ratio(L/D) is increased, hydrogen production increases.

A Study on the Operating Characteristics and System Modelling of Closed Loop Type Thermosyphon (루프형태의 밀폐형 Thermosyphon의 작동특성과 시스템 모델링에 관한 연구)

  • Kang, M.C.;Kang, Y.H.;Lee, D.G.
    • Journal of the Korean Solar Energy Society
    • /
    • v.22 no.2
    • /
    • pp.39-47
    • /
    • 2002
  • The thermosyphon SDHWS and the loop type thermosyphon systems are widely used for domestic hot water system. The loop type thermosyphon is a circulation device for transferring the heat produced at the evaporator to the condenser area in the loop. In this study, the operating characteristics of various working fluids being used have been identified. The working fluids employed in the study were ethanol. water, and a binary mixture of ethanol and water. The volume of working fluid used in this study were 30%, 40%, 50%, 60% and 70% of evaporator volume. It is observed that, in the thermosyphon with low volume of working fluid, such as 30% or 40%, the fluid was dried out. The flow pattern and mechanism of the heat transfer were identified through this study. Flow patterns of the binary mixture working fluid were also investigated, and the patterns were recorded in the camera. The system parameters were calculated using the thermal performance data. Modelling of the system was carried out using PSTAR method and TRNSYS program.