DOI QR코드

DOI QR Code

Comparative Research on the Carbon Dioxide Liquefaction Using Several Refrigerants

몇 가지 냉매를 사용한 이산화탄소 액화에 대한 비교 연구

  • ILSU PARK (Department of Chemical Engineering) ;
  • PHILSUNG HWANG (Technology Research Center, Hyundai Engineering & Construction) ;
  • KICHEOL JUNG (Technology Research Center, Hyundai Engineering & Construction) ;
  • JUNESHU ANH (Department of Energy and Environmental Engineering) ;
  • JUNGHO CHO (Department of Chemical Engineering)
  • 박일수 (국립공주대학교 공과대학 화학공학부) ;
  • 황필성 (현대건설 기술연구원) ;
  • 정기철 (현대건설 기술연구원) ;
  • 안준수 (대진대학교 스마트건설.환경공학부) ;
  • 조정호 (국립공주대학교 공과대학 화학공학부)
  • Received : 2023.04.14
  • Accepted : 2023.04.21
  • Published : 2023.04.28

Abstract

In this study, we compared the performance of several refrigeration cycles using different refrigerants and utilizing the cold heat of liquefied natural gas (LNG) for the liquefaction of carbon dioxide. The final conditions for the liquefied CO2 were set to -20℃ and 20 bar. The refrigerants used included R404a, ammonia, propane, and propylene using a vapor recompression refrigeration cycle. For the refrigeration cycle, the CO2 at room temperature and pressure was compressed in a two-stage compression process with an intermediate cooling stage using a refrigeration unit. To compare with the liquefaction process using refrigeration, we compressed the CO2 to 8 bar in a single compression stage and cooled it to around -50℃ using the cold heat of the LNG before liquefying it. Results showed that using ammonia as the refrigerant required the least amount of compressor power for the liquefaction process, and the heat transfer area of the evaporator was the smallest when using propylene as the refrigerant. Using the cold heat of LNG instead of refrigeration using R404a resulted in approximately 69% less energy consumption.

Keywords

Acknowledgement

본 연구는 2023년도 정부(과학기술정보통신부)의 재원으로 한국연구재단-CCU3050 사업의 지원을 받아 수행된 연구임(No.2022M3J2A1063788).

References

  1. K. T. Kim, J. S. Ahn, Y. A, Lee, and J. Y. Choi, "CCUS In-depth investment analysis report", Korea Institute of Energy Research, 2021. Retrieved from https://www.kier.re.kr/UploadFiles/tpp/energy/16366126893490.pdf.
  2. Y. Le Moullec, T. Neveux, K. Makhloufi, D. Roizard, M. Kanniche, and E. Favre, "Development of a CO2 capture process based on ammonia solvent and a dedicated composite hollow fibre membrane contactor", Energy Procedia, Vol. 63, 2014, pp. 651-658, doi: https://doi.org/10.1016/j.egypro.2014.11.072.
  3. R. Bouma, F. Vercauteren, P. van Os, E. Goetheer, D. Berstad, and R. Anantharaman, "Membraneassisted CO2 liquefaction: performance modelling of CO2 capture from flue gas in cement production", Energy Procedia, Vol. 114, 2017, pp. 72-80, doi: https://doi.org/10.1016/j.egypro.2017.03.1149.
  4. Z. Rui, J. B. James, A. Kasik, and Y. S. Lin, "Metalorganic framework membrane process for high purity CO2 production", AIChE Journal, Vol. 62, No. 11, 2016, pp. 3836-3841, doi:https://doi.org/10.1002/aic.15367.
  5. J. C. L. Y. Fong, C. J. Anderson, G. Xiao, P. A. Webley, and A. F. A. Hoadley, "Multiobjective optimisation of a hybrid vacuum swing adsorption and low-temperature post-combustion CO2 capture", Journal of Cleaner Production, Vol. 111, Pt. A, 2016, pp. 193-203, doi: https://doi.org/10.1016/j.jclepro.2015.08.033.
  6. S. Yang, U. Lee, Y. Lim, Y. S. Jeong, J. Kim, C. Lee, and C. Han, "Process design and cost estimation of carbon dioxide compression and liquefaction for transportation", Korean Chemical Engineering Research, Vol. 50, No. 6, 2012, pp. 988-993, doi: https://doi.org/10.9713/kcer.2012.50.6.988.
  7. J. Cho, "A study on the power saving with the use of LNG cold heat in a cascade refrigeration cycle using methane, ethylene and propylene as refrigerants", Journal of Hydrogen and New Energy, Vol. 31, No. 3, 2020, pp. 302-306, doi: https://doi.org/10.7316/KHNES.2020.31.3.302.
  8. J. M. Smith, H. C. Van Ness, M. M. Abbott, and M. T. Swihart, "Introduction to chemical engineering thermodynamics", 8th ed, McGraw Hill, 2018, USA, pp. 327-343.
  9. C. H. Twu, D. Bluck, J. R. Cunningham, and J. E. Coon, "A cubic equation of state with a new alpha function and a new mixing rule", Fluid Phase Equilibria, Vol. 69, 1991, pp. 33-50, doi: https://doi.org/10.1016/03783812(91)900242.
  10. J. Cho, K. Cho, D. Kim, Y. Lee, and S. Hong, "Estimation of physical properties of natural gas using cubic equations of state", Journal of the Korean Institute of Gas, Vol. 10, No. 4, 2006, pp. 6-10. Retrieved from https://scienceon.kisti.re.kr/commons/util/originalView.do?cn=JAKO200606141824634&oCn=JAKO200606141824634&dbt=JAKO&journal=NJOU00291946.