• Title/Summary/Keyword: Heat Transfer Model

Search Result 1,848, Processing Time 0.027 seconds

Surrogate Models and Genetic Algorithm Application to Approximate Optimization of Discrete Design for A60 Class Deck Penetration Piece (A60 급 갑판 관통 관의 이산설계 근사최적화를 위한 대리모델과 유전자 알고리즘 응용)

  • Park, Woo Chang;Song, Chang Yong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.2
    • /
    • pp.377-386
    • /
    • 2021
  • The A60 class deck penetration piece is a fire-resistant system installed on a horizontal compartment to prevent flame spreading and protect lives in fire accidents in ships and offshore plants. This study deals with approximate optimization using discrete variables for the fire resistance design of an A60 class deck penetration piece using different surrogate models and a genetic algorithm. Transient heat transfer analysis was performed to evaluate the fire resistance design of the A60 class deck penetration piece. For the approximate optimization of the piece, the length, diameter, material type, and insulation density were applied to discrete design variables, and temperature, productivity, and cost constraints were considered. The approximate optimum design problem based on the surrogate models was formulated such that the discrete design variables were determined by minimizing the weight of the piece subjected to the constraints. The surrogate models used in the approximate optimization were the response surface model, Kriging model, and radial basis function-based neural network. The approximate optimization results were compared with the actual analysis results in terms of approximate accuracy. The radial basis function-based neural network showed the most accurate optimum design results for the fire resistance design of the A60 class deck penetration piece.

Integrated Numerical Analysis of Induction-Heating-Aided Injection Molding Under Interactive Temperature Boundary Conditions (열-유동 상호작용을 고려한 유도가열 적용 미세 사출성형의 통합적 수치해석)

  • Eom, Hye-Ju;Park, Keun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.5
    • /
    • pp.575-582
    • /
    • 2010
  • In recent years, several rapid-mold-heating techniques that can be used for the injection molding of thin-walled parts or micro/nano structures have been developed. High-frequency induction heating, which involves heating by electromagnetic induction, is an efficient method for the rapid heating of mold surfaces. The present study proposes an integrated numerical model of the high-frequency induction heating process and the resulting injection molding process. To take into account the effects of thermal boundary conditions in induction heating, we carry out a fully integrated numerical analysis that combines electromagnetic field calculation, heat transfer analysis, and injection molding simulation. The proposed integrated simulation is extended to the injection molding of a thin-wall part, and the simulation results are compared with the experimental findings. The validity of the proposed simulation is discussed according to the ways of the boundary condition imposition.

Prediction of sacrificial material ablation rate by corium jet impingement (노심 용융물 제트 충돌에 의한 희생물질의 침식예측)

  • Suh, Jungsoo;Kim, Hangon
    • Journal of Energy Engineering
    • /
    • v.23 no.3
    • /
    • pp.21-26
    • /
    • 2014
  • EU-APR1400, the Korean nuclear reactor design for European market adopts a so-called core catcher for ex-vessel molten corium retention and cooling as a severe-accident mitigation system. Sacrificial material, which controls melt properties and modifies melt conditions favorable for corium cooling and retention, is usually employed to protect core catcher body from molten corium. Since molten corium can be ejected through a breach of a reactor pressure vessel and impinged on the sacrificial material with enhanced heat transfer at a severe accident, it is very important to predict ablation rate of sacrificial material due to corium jet impingement accurately for core catcher design. In this paper, sacrificial-material ablation model based on boundary layer theory is suggested and compared with the experimental results by KAERI.

A Numerical Study of a Vehicle Windshield Defrosting Mechanism (자동차 전면유리 제상 메커니즘의 수치해석 연구)

  • Kang, Seung-Jae;Jun, Yong-Du;Lee, Kum-Bae
    • Journal of Energy Engineering
    • /
    • v.19 no.3
    • /
    • pp.151-155
    • /
    • 2010
  • Adequate visibility through a vehicle windshield and frost melting period are critical aspects of major design parameters. To make progress in this area, a good understanding of the flow behavior and heat transfer characteristics produced by the HVAC module is required. The computational study was used to perform the parametric investigation into the defroster nozzle's performance with a full-scale model. The study highlights the drawbacks of current designs and points the way to improve passive defrosting mechanism. The results show that the current design of the defroster nozzles deliver the maximum airflow in the vicinity of the lower part of the windshield, which yields unsatisfactory visibility. Defrosting performance was excellent when the injection angle of the defrost nozzle was 45 degree. The numerical analysis satisfies the criteria provided by NHTSA.

An experimental study on the characteristic times of viscoelastic fluids by falling ball viscometer (낙구식 점도계를 이용한 점탄성 유체의 특성시간에 관한 실험적 연구)

  • 전찬열;유상신
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.1
    • /
    • pp.241-250
    • /
    • 1990
  • Characteristic relaxation time and characteristic diffusion time of viscoelastic fluids are determined experimentally by measuring the zero-shear-rate viscosity by falling ball viscometer and the infinite-shear-rate viscosity by capillary tube viscometer. Fluids used in experiments are aqueous solutions of polyacrylamide Separan AP-273 and the polymer concentrations range from 300 to 2000 wppm. A newly designed laser beam and timer system is employed to overcome the difficulty in measuring terminal velocities of the low concentration solutions. Ball removal device is prepared to remove the dropped ball from the bottom of cylinder without disturbing the testing fluid. In order to measure the zero-shear-rate viscosity, densities of hollow aluminium balls are adjusted very close to the densities of testing fluids. Characteristic diffusion time, which is ball viscometer. However, terminal velocity of a needle by falling ball viscometer is not affected by the time interval of dropping needles and characteristic diffusion time is not measured with a dropping needle. Powell-Eyring model predicts the highest values of the characteristic relaxation times among models used for heat transfer experimental works for a given polymer solution. As degradation of a polymer solution continues, the zero-shear-rate viscosity decreases more seriously than the infinite-shear-rate viscosity. Characteristic relaxation times of polymer solutions decreases as degradation continues.

Drying Characteristics of Minced Fish on Drum Dryers (잘게 저민 생선의 드럼건조기에 의한 건조특성)

  • Kim, Kong-Hwan;Piyarat, Warcharin
    • Korean Journal of Food Science and Technology
    • /
    • v.18 no.5
    • /
    • pp.351-356
    • /
    • 1986
  • The effects of drum spacing, steam pressure and drum speed on drying rate of minced fish flesh on both single and double drum dryers were studied. Starch additions in the form of tapioca flour up to 2.5% have been found satisfactory for aiding in sheet formation at the doctor blade. When the retention time was adjusted to maintain a constant product moisture, the highest production rate was obtained at the smallest drum spacing and the highest steam pressure within the limits of experimental conditions considered. The operating conditions suitable for producing the flakes with 5% moisture were: 100 kPa (steam pressure), 0.1 mm (drum spacing) and 3 rpm (drum speed). The production rate and overall heat transfer coefficient under these conditions were $12.1\;kg/m^2$hr and 950 $W\;/m^2K$ respectively. The drying data were fitted well to the conventional drying model, namely $MR\;=\;A\;\exp\;(-k{\theta})$, resulting in the various drying constants depending the operating conditions.

  • PDF

DETECTABILITY OF SUNGRAZING COMET SOFT X-RAY IRRADIANCE (SUNGRAZING 혜성이 방출하는 X-선 관측 가능성에 관한 연구)

  • Oh, Su-Yeon;Yi, Yu;Nah, Ja-Kyoung;Kim, Yong-Ha
    • Journal of Astronomy and Space Sciences
    • /
    • v.24 no.4
    • /
    • pp.309-314
    • /
    • 2007
  • Originating from the Oort cloud, some comets disappear to impact against the Sun or to split up by strong gravitational force. Then they don't go back to the Oort cloud. They are called sungrazing comets. The comets are detected by sublimation of ices and ejection of gas and dust through solar heat close to the Sun. There exists the charge transfer from heavy ions in the solar wind to neutral atoms in the cometary atmosphere by interaction with the solar wind. Cometary atoms would be excited to high electronic levels and their do-excitation would result in X-ray emission, or it would be scattering of solar X-ray emission by very small cometary grains. We calculated the X-ray emission applying the model suggested by Mendis & Flammer (1984) and Cravens (1997). In our estimation, the sungrazing comet whose nucleus size is about 1 km in radius might be detectable within a distance of 3 solar radius from the sun on soft X-ray solar camera.

A Study on the Thermal Environment Evaluation of 'Hanok' considering Solid Model of Building Elements (한옥의 건축요소 솔리드 모델링을 통한 열환경 평가에 관한 연구)

  • Park, Tong-So;Sheen, Dong-Jin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.2
    • /
    • pp.955-961
    • /
    • 2013
  • This study aimed for the scientific approach of Korean traditional house, so called Hanok, by analyses of structural elements and thermal environmental performance. Hanok is a very unique vernacular architectural style of the Middle East Asia that fits with climate conditions of the Korean Peninsular, designed to withstand high temperature and humidity in summer and cold and dry in winter seasons. In order to evaluate thermal environment of Hanok, its sectional structure such as floor, wall, roof structure and Ondol which is Korean traditional floor heating system, was built in 3D, as well as heat transfer mechanism of its composing elements was analyzed through 3 dimensional steady state analysis. The results of the thermal environmental performance of Hanok will be used as a basic datum of design guidelines for accomplishing ecologic housing fitted with local climate.

Predicting the Frequency of Combustion Instability Using the Measured Reflection Coefficient through Acoustic Excitation

  • Bae, Jinhyun;Yoon, Jisu;Joo, Seongpil;Kim, Jeoungjin;Jeong, Chanyeong;Sohn, Chae Hoon;Borovik, Igor N.;Yoon, Youngbin
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.4
    • /
    • pp.797-806
    • /
    • 2017
  • In this study, the reflection coefficient (RC) and the flame transfer function (FTF) were measured by applying acoustic excitation to a duct-type model combustor and were used to predict the frequency of the combustion instability (CI). The RC is a value that varies with the excitation frequency and the geometry of the combustor as well as other factors. Therefore, in this study, an experimentally measured RC was used to improve the accuracy of prediction in the cases of 25% and 75% hydrogen in a mixture of hydrogen and methane as a fuel. When the measured RCs were used, an unstable condition was correctly predicted, which had not been predicted when the RCs had been assumed to be a certain value. The reason why the CI occurred at a specific frequency was also examined by comparing the peak of the FTF with the resonance frequency, which was calculated using Helmholtz's resonator analysis and a resonance frequency equation. As the CI occurred owing to the interaction between the perturbation in the rate of heat release and that in the pressure, the CI was frequent when the peak of the FTF was close to the resonance frequency such that constructive interference could occur.

A Haptic Rendering Technique for 3D Objects with Vector Field (벡터 필드를 가진 3차원 오브젝트의 햅틱 렌더링 기법)

  • Kim, Lae-Hyun;Park, Se-Hyung
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.33 no.4
    • /
    • pp.216-222
    • /
    • 2006
  • Vector field has been commonly used to visualize the data set which is invisible or is hard to explain. For instance, it could be used to visualize scientific data such as the direction and amount of wind and water field, transfer of heat through thermally conductive materials, and electromagnetic field. In this paper, we present a technique to enable intuitive recognition of the data though haptic feedback along with visual feedback. To add tactile information to graphical vector field, we model a haptic vector field and then apply it to the haptic map to guide a user to destination and haptic simulation of water field on 2D images whish can be used ill everyday life. These systems allow one to recognize vector information intuitively through haptic interface. We expect that the haptic rendering technique of vector field can be applied to various applications such as education, training, and entertainment.