DOI QR코드

DOI QR Code

Surrogate Models and Genetic Algorithm Application to Approximate Optimization of Discrete Design for A60 Class Deck Penetration Piece

A60 급 갑판 관통 관의 이산설계 근사최적화를 위한 대리모델과 유전자 알고리즘 응용

  • Park, Woo Chang (Department of Naval Architecture and Ocean Engineering, Mokpo National University) ;
  • Song, Chang Yong (Department of Naval Architecture and Ocean Engineering, Mokpo National University)
  • 박우창 (목포대학교 조선해양공학과) ;
  • 송창용 (목포대학교 조선해양공학과)
  • Received : 2021.02.18
  • Accepted : 2021.04.27
  • Published : 2021.04.30

Abstract

The A60 class deck penetration piece is a fire-resistant system installed on a horizontal compartment to prevent flame spreading and protect lives in fire accidents in ships and offshore plants. This study deals with approximate optimization using discrete variables for the fire resistance design of an A60 class deck penetration piece using different surrogate models and a genetic algorithm. Transient heat transfer analysis was performed to evaluate the fire resistance design of the A60 class deck penetration piece. For the approximate optimization of the piece, the length, diameter, material type, and insulation density were applied to discrete design variables, and temperature, productivity, and cost constraints were considered. The approximate optimum design problem based on the surrogate models was formulated such that the discrete design variables were determined by minimizing the weight of the piece subjected to the constraints. The surrogate models used in the approximate optimization were the response surface model, Kriging model, and radial basis function-based neural network. The approximate optimization results were compared with the actual analysis results in terms of approximate accuracy. The radial basis function-based neural network showed the most accurate optimum design results for the fire resistance design of the A60 class deck penetration piece.

A60 급 갑판 관통 관은 선박과 해양플랜트에서 화재사고가 발생할 경우 화염의 확산을 방지하고 인명을 보호하기 위해 수평구조에 설치되는 방화장치이다. 본 연구에서는 다양한 대리모델과 다중 섬 유전자 알고리즘을 이용하여 A60 급 갑판 관통 관의 방화설계에 대한 이산변수 근사최적화를 수행하였다. A60 급 갑판 관통 관의 방화설계는 과도 열전달해석을 통해 평가하였다. 근사최적화에서 관통관의 길이, 지름, 재질, 그리고 단열재의 밀도는 이산설계변수로 적용하였고, 제한조건은 온도, 생산성 및 가격을 고려하였다. 대리모델 기반의 근사최적설계 문제는 제한조건을 만족하면서 A60 급 갑판 관통 관의 중량을 최소화할 수 있는 이산설계변수를 결정하도록 정식화하였다. 반응표면모델, 크리깅, 그리고 방사기저함수 신경망과 같은 다양한 대리모델이 근사최적화에 사용되었다. 근사최적화의 정확도를 검토하기 위해 최적해의 결과는 실제 계산 결과와 비교하였다. 근사최적화에 사용된 대리모델 중 방사기저함수 신경망 모델이 A60 급 갑판 관통 관의 방화설계에 대해 가장 정확한 최적설계 결과를 나타내었다.

Keywords

Acknowledgement

본 연구는 중소벤처기업부에서 지원하는 2020년도 산학연 Collabo R&D사업(No. S2910737)과 교육부의 재원으로 한국연구재단의 지원을 받아 수행된 지자체-대학 협력기반 지역혁신 사업의 연구결과입니다.

References

  1. Choi, J. M., H. C. Um, and Y. H. Jin(2014), Comparison on the fire performance of additional insulation materials for improving the fire retardancy in engine-room of FRP vessel. Journal of the Korean Society of Marine Engineering, Vol. 38, No. 9, pp. 1150-1155. https://doi.org/10.5916/jkosme.2014.38.9.1150
  2. Choi, T. J., J. S. Kim, K. K. Choi, Y. S. Lim, and Y. T. Kim(2013), An experimental study on the fireproof of fire damper in accordance with insulation conditions on the coaming and blade. Journal of the Korean Society of Marine Engineering, Vol. 37, No. 4, pp. 431-437. https://doi.org/10.5916/jkosme.2013.37.4.431
  3. Dyn, N., D. Levin, and S. Rippa(1986), Numerical procedures for surface fitting of scattered data by radial basis functions. SIAM Journal on Scientific and Statistical Computing, Vol. 7, No. 2, pp. 639-659. https://doi.org/10.1137/0907043
  4. Grigonis, M., R. Maciulaitis, and D. Lipinskas(2011), Fire resistance tests of various fire protective coatings. Materials Science, Vol. 17, No. 1, pp. 93-98. https://doi.org/10.5755/j01.ms.17.1.257
  5. Hu, X., X. Chen, Y. Zhao, and W. Yao(2014), Optimization design of satellite separation system based on multi-island genetic algorithm, Advanced Space Research, Vol. 53, No. 1, pp. 870-876. https://doi.org/10.1016/j.asr.2013.12.021
  6. IEC(2008), International Electrotechnical Commission, IEC Statutes and Rules of Procedure - 751, UK.
  7. IMO(2010), International Convention for the Safety of Life at Sea, SOLAS 1999/2000 Amendment, UK.
  8. ISO(1999), Fire Resistance Tests - Elements of Building Construction, ISO 834-1, Switzerland.
  9. Jang, C. J., N. S. Hur, and I. W. Kim(2014), Performance experiment of H-120 class fire damper for offshore. Journal of the Korean Society of Manufacturing Process Engineers, Vol. 13, No. 2, pp. 131-136. https://doi.org/10.14775/ksmpe.2014.13.2.131
  10. Lautenberger, C., G. Rein, and C. Fernandez-Pello(2006), The application of a genetic algorithm to estimate material properties for fire modeling from bench-scale fire test data. Fire Safety Journal, Vol. 41, No. 3, 204-214. https://doi.org/10.1016/j.firesaf.2005.12.004
  11. Ma, F., L. Han, Y. Zhou, S. Chen, and Y. Pu(2018), Multi-island genetic algorithm and Kriging model-based design of vehicle product comprising multi-material, IEEE Access, Vol. 6, No. 1, pp. 53397-53408. https://doi.org/10.1109/ACCESS.2018.2871776
  12. Magnabosco, I., P. Ferro, A. Tiziani, and F. Bonollo(2006), Induction heat treatment of a ISO C45 steel bar: experimental and numerical analysis. Computational Materials Science, Vol. 35, No. 2, pp. 98-106. https://doi.org/10.1016/j.commatsci.2005.03.010
  13. MSC(2010), Adoption of the International Code for Application of Fire Test Procedures - MSC.307(88), UK.
  14. Ohmura, T., M. Tsuboi, and M. Onodera(2003), Specific heat measurement of high temperature thermal insulations by drop calorimeter method. International Journal of Thermophysics, Vol. 24, No. 2, pp. 559-575. https://doi.org/10.1023/A:1022936408676
  15. Park, W. C., C. Y. Song, and O. Na(2018), Heat transfer characteristics of bulkhead penetration piece for A60 class compartment - I, Journal of Ocean Engineering and Technology, Vol. 32, No. 5, pp. 310-323. https://doi.org/10.26748/KSOE.2018.6.32.5.310
  16. Piscopo, G., E. Atzeni, and A. Salmi(2019), A hybrid modeling of the physics-driven evolution of material addition and track generation in laser powder directed energy deposition. Materials, Vol. 12, No. 17, pp. 1-23.
  17. Pyl, L., L. Schueremans, W. Dierckx, and I. Georgieva(2012), Fire safety analysis of a 3D frame structure based on a full-scale fire test. Thin-walled Structures, Vol. 61, No. 1, 204-212. https://doi.org/10.1016/j.tws.2012.03.023
  18. Simulia(2019), Abaqus User Manual, Simulia.
  19. Song, C. Y. and Y. Kim(2020), Identification of fire resistance characteristics of bulkhead penetration pieces for A-0 class compartment. Journal of Advanced Marine Engineering and Technology, Vol. 44, No. 6, pp. 414-421. https://doi.org/10.5916/jamet.2020.44.6.414
  20. Song, C. Y. and J. Lee(2010), Comparative study of approximate optimization techniques in CAE-based structural design. Transactions of the Korean Society of Mechanical Engineers-A, Vol. 34, No. 11, pp. 1603-1611. https://doi.org/10.3795/KSME-A.2010.34.11.1603
  21. Suman, S., P. Biswas, and P. Sridhar(2016), Numerical prediction of welding distortion in submerged arc welded butt and fillet joints. International conference on Design and Manufacturing, IIITDM, Kanchipuram.
  22. Yu, J. S., H. G. Sung, and J. H. Oh(2000), An experimental study on fire-resistant boom. Journal of the Korean Society of Marine Environmental Engineering, Vol. 3, No. 2, pp. 25-32.
  23. Yunus, A. C. and J. G. Afshin(2012), Heat and Mass Transfer: Fundamentals and Applications, McGraw-Hill.