DOI QR코드

DOI QR Code

DETECTABILITY OF SUNGRAZING COMET SOFT X-RAY IRRADIANCE

SUNGRAZING 혜성이 방출하는 X-선 관측 가능성에 관한 연구

  • Oh, Su-Yeon (Dept. of Astronomy and Space Science, Chungnam University) ;
  • Yi, Yu (Dept. of Astronomy and Space Science, Chungnam University) ;
  • Nah, Ja-Kyoung (Korea Astronomy and Space Science Institute) ;
  • Kim, Yong-Ha (Dept. of Astronomy and Space Science, Chungnam University)
  • 오수연 (충남대학교 천문우주과학과) ;
  • 이유 (충남대학교 천문우주과학과) ;
  • 나자경 (한국천문연구원) ;
  • 김용하 (충남대학교 천문우주과학과)
  • Published : 2007.12.15

Abstract

Originating from the Oort cloud, some comets disappear to impact against the Sun or to split up by strong gravitational force. Then they don't go back to the Oort cloud. They are called sungrazing comets. The comets are detected by sublimation of ices and ejection of gas and dust through solar heat close to the Sun. There exists the charge transfer from heavy ions in the solar wind to neutral atoms in the cometary atmosphere by interaction with the solar wind. Cometary atoms would be excited to high electronic levels and their do-excitation would result in X-ray emission, or it would be scattering of solar X-ray emission by very small cometary grains. We calculated the X-ray emission applying the model suggested by Mendis & Flammer (1984) and Cravens (1997). In our estimation, the sungrazing comet whose nucleus size is about 1 km in radius might be detectable within a distance of 3 solar radius from the sun on soft X-ray solar camera.

오르트 구름을 출발하여 태양계 안쪽으로 들어오는 혜성 가운데 오르트 구름으로 되돌아가지 못하고, 태양에 매우 근접하여 태양에 충돌해 버리거나 강한 중력에 의해 쪼개져 사라지는 혜성을 sungrazing comet이라고 한다. 태양에 가까워지면서 태양열에 의해 혜성의 얼음이 승화되면서 그 존재를 확인하게 되는데, 태양풍의 고전리된 중원소이온과 충돌에 의한 전하교환의 상호 작용에 의해 혜성에서 발생하는 가스량과 X-선 방출량을 기존 모델(Mendis & Flammer 1984, Cravens 1997)을 적용하여 근사 계산한 결과, 혜성핵의 반지름이 1km 정도인 경우 태양으로부터 거리가 태양반경의 3배 이내인 거리에서 GOES 위성의 X-선 망원경으로 탐지가능한 것으로 보인다.

Keywords

References

  1. 이성은, 이유, 김용하, Brandt, J. C. 2007, 한국우주과학회지, 24, 227 https://doi.org/10.5140/JASS.2007.24.3.227
  2. Bhardwaj, A., Gladstone, G. R., Elsner, R. F., Waite, J. H., Jr., Grodent, D., Cravens, T. E., Howell, R. R., Metzger, A. E., Ostgaard, N., Maurellis, A. N., and 15 coauthors 2002, in Earth-like Planets and Moons, eds. B. Foing & B. Battrick (Noordwijk: ESA Publications), p.215
  3. Bolton, D. 1980, Monthly Weather Review, 108, 1046 https://doi.org/10.1175/1520-0493(1980)108<1046:TCOEPT>2.0.CO;2
  4. Cravens, T. E. 1997, Geophys. Res. Lett., 27, 105
  5. Cravens, T. E. 2000, Adv. Space Res., 26, 1443 https://doi.org/10.1016/S0273-1177(00)00100-9
  6. Cravens, T. E. 2002, Science, 296, 1042 https://doi.org/10.1126/science.1070001
  7. Crovisier, J. & Encrenaz, T. 2000, Comet Science: The Study of Remnants from the Birth of the Solar System (Cambridge: Cambridge University Press), pp.95-105
  8. Gombosi, T. I., Horanyi, M., Kecskemety, K., Cravens, T. E., -& Nagy, A. F. 1983, ApJ, 268, 889 https://doi.org/10.1086/161011
  9. Huebner, W. F. 1990, Physics and Chemistry of Comets (Berlin: Springer-Verlag), pp.13-44
  10. Marsden, B. G. 1967, AJ, 72, 1170 https://doi.org/10.1086/110396
  11. Mendis, D. A. & Flammer, K. R. 1984, Earth, Moon, and Planets, 31, 301 https://doi.org/10.1007/BF00058907