• 제목/요약/키워드: Heat Transfer Limit

검색결과 103건 처리시간 0.025초

非金屬 環狀윅을 갖는 히이트파이프 性能개선에 관한 연구 (A study on the improvement of the heat pipe performance with non metallic circumferential wick)

  • 서정일;장영석
    • 대한기계학회논문집
    • /
    • 제10권5호
    • /
    • pp.713-723
    • /
    • 1986
  • 본 논문에서는 비금속성 재질(SiO$_{2}$)로 만든 윅의 열전달 특성을 실험적 해석적 방법으로 연구했다. 먼저 비금속 윅을 단독으로만 실험하여 해석해와의 일치 성을 밝히고, 윅의 성능 개선을 위해 결합재의 첨가가 히이트파이프 증발부의 열전달 에 미치는 영향을 ADI해석 해법으로 예측하였다. 따라서 고온용 히이트파이프 뿐만 아니라 ,저온용에서도 비금속윅의 사용을 위한 가치 판단을 하고 비금속성 재질(SiO S12 등)이 윅으로서 넓게 이용 될수 있다는 가능성을 제시하는데 그 목적이 있다.

Local Heat Transfer Coefficients for Reflux Condensation Experiment in a Vertical Tube in the Presence of Noncondensible Gas

  • Moon, Young-Min;No, Hee-Cheon;Bang, Young-Seok
    • Nuclear Engineering and Technology
    • /
    • 제31권5호
    • /
    • pp.486-497
    • /
    • 1999
  • The local heat transfer coefficient is experimentally investigated for the reflux condensation in a countercurrent flow between the steam-air mixture and the condensate, A single vertical tube has a geometry which is a length of 2.4m, inner diameter of 16.56mm and outer diameter of 19.05mm and is made of stainless steel. Air is used as a noncondensible gas. The secondary side has a shape of annulus around vertical tube and the lost heat by primary condensation is transferred to the coolant water. The local temperatures are measured at 11 locations in the vertical direction and each location has 3 measurement points in the radial direction, which are installed at the tube center, at the outer wall and at the coolant side. In three different pressures, the 27 sets of data are obtained in the range of inlet steam flow rate 1.348∼3.282kg/hr, of inlet air mass fraction 11.8∼55.0%. The investigation of the flooding is preceded to find the upper limit of the reflux condensation. Onset of flooding is lower than that of Wallis' correlation. The local heat transfer coefficient increases as the increase of inlet steam flow rate and decreases as the increase of inlet air mass fraction. As an increase of the system pressure, the active condensing region is contracted and the heat transfer capability in this region is magnified. The empirical correlation is developed by 165 data of the local heat transfer. As a result, the Jacob number and film Reynolds number are dominant parameters to govern the local heat transfer coefficient. The rms error is 17.7% between the results by the experiment and by the correlation.

  • PDF

SORET AND CHEMICAL REACTION EFFECTS ON THE RADIATIVE MHD FLOW FROM AN INFINITE VERTICAL POROUS PLATE

  • MALAPATI, VENKATESWARLU;DASARI, VENKATA LAKSHMI
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제21권1호
    • /
    • pp.39-61
    • /
    • 2017
  • In this present article, we analyzed the heat and mass transfer characteristics of the nonlinear unsteady radiative MHD flow of a viscous, incompressible and electrically conducting fluid past an infinite vertical porous plate under the influence of Soret and chemical reaction effects. The effect of physical parameters are accounted for two distinct types of thermal boundary conditions namely prescribed uniform wall temperature thermal boundary condition and prescribed heat flux thermal boundary condition. Based on the flow nature, the dimensionless flow governing equations are resolved to harmonic and non harmonic parts. In particular skin friction coefficient, Nusselt number and Sherwood number are found to evolve into their steady state case in the large time limit. Parametric study of the solutions are conducted and discussed.

NANOTECHNOLOGY FOR ADVANCED NUCLEAR THERMAL-HYDRAULICS AND SAFETY: BOILING AND CONDENSATION

  • Bang, In-Cheol;Jeong, Ji-Hwan
    • Nuclear Engineering and Technology
    • /
    • 제43권3호
    • /
    • pp.217-242
    • /
    • 2011
  • A variety of Generation III/III+ water-cooled reactor designs featuring enhanced safety and improved economics are being proposed by nuclear power industries around the world in efforts to solve the future energy supply shortfall. Thermal-hydraulics is recognized as a key scientific subject in the development of innovative reactor systems. Phase change by boiling and condensation in the reverse process is a highly efficient heat transport mechanism that accommodates large heat fluxes with relatively small driving temperature differences. This mode of heat transfer is encountered in a wide spectrum of nuclear systems,and thus it is necessary to determine the thermal limit of water-cooled nuclear energy conversion in terms of economic and safety. Such applications are being advanced with the introduction of new technologies such as nanotechnology. Here, we investigated newly-introduced nanotechnologies relevant to boiling and condensation in general engineering applications. We also evaluated the potential linkage between such new advancements and nuclear applications in terms of advanced nuclear thermal-hydraulics.

소결윅 히트파이프의 제작 및 작동성능 (Manufacturing and Operating Performance of the Heat Pipe with Sintered Wick)

  • 윤호경;문석환;고상춘;황건;최태구
    • 대한기계학회논문집B
    • /
    • 제26권9호
    • /
    • pp.1260-1266
    • /
    • 2002
  • In this study, to make an excellent heat pipe, the manufacturing technology of a sintered wick was investigated. Making a sintered wick is known to be very difficult but it has many advantages. For example, the porosity and pore size can be controlled and the capillary force is great. The mixture of copper and pore former powder was used as a wick material and ceramic-coated stainless steel was used as a mandrel which is necessary for vapor flow. To analyze the feature of the manufactured wick, not only porosity and pore size were measured but also the sintered structure was observed. A heat pipe with sintered wick was manufactured and the performance test of the heat pipe was performed in order to review cooling performance. The performance test results for the 4mm diameter heat pipe with the sintered wick shows the stability since the temperature difference between a evaporator and a condenser of the heat pipe is less than 4.4$^{\circ}C$, and thermal resistance is less than 0.7$^{\circ}C$/W, In the meantime the composite wick that is composed with sintered and woven wire was also examined. The heat transfer limit of the heat pipe with composite wick was enhanced about 51%~60% compare to the one with sintered wick.

Numerical study of the flow and heat transfer characteristics in a scale model of the vessel cooling system for the HTTR

  • Tomasz Kwiatkowski;Michal Jedrzejczyk;Afaque Shams
    • Nuclear Engineering and Technology
    • /
    • 제56권4호
    • /
    • pp.1310-1319
    • /
    • 2024
  • The reactor cavity cooling system (RCCS) is a passive reactor safety system commonly present in the designs of High-Temperature Gas-cooled Reactors (HTGR) that removes heat from the reactor pressure vessel by means of natural convection and radiation. It is one of the factors responsible for ensuring that the reactor does not melt down under any plausible accident scenario. For the simulation of accident scenarios, which are transient phenomena unfolding over a span of up to several days, intermediate fidelity methods and system codes must be employed to limit the models' execution time. These models can quantify radiation heat transfer well, but heat transfer caused by natural convection must be quantified with the use of correlations for the heat transfer coefficient. It is difficult to obtain reliable correlations for HTGR RCCS heat transfer coefficients experimentally due to such a system's size. They could, however, be obtained from high-fidelity steady-state simulations of RCCSs. The Rayleigh number in RCCSs is too high for using a Direct Numerical Simulation (DNS) technique; thus, a Reynolds-Averaged Navier-Stokes (RANS) approach must be employed. There are many RANS models, each performing best under different geometry and fluid flow conditions. To find the most suitable one for simulating an RCCS, the RANS models need to be validated. This work benchmarks various RANS models against three experiments performed on the HTTR RCCS Mockup by the Japanese Atomic Energy Agency (JAEA) in 1993. This facility is a 1/6 scale model of a vessel cooling system (VCS) for the High Temperature Engineering Test Reactor (HTTR), which is operated by JAEA. Multiple RANS models were evaluated on a simplified 2d-axisymmetric geometry. They were found to reproduce the experimental temperature profiles with errors of up to 22% for the lowest temperature benchmark and 15% for the higher temperature benchmarks. The results highlight that the pragmatic turbulence models need to be validated for high Rayleigh natural convection-driven flows and improved accordingly, more publicly available experimental data of RCCS resembling experiments is needed and indicate that a 2d-axisymmetric geometry approximation is likely insufficient to capture all the relevant phenomena in RCCS simulations.

전압안정도 제약계통에 대한 고온초전도 케이블 적용효과 (Effects of HTS cable Applied to the Voltage Stability Limited Power System)

  • 이근준;황시돌;이소영;변찬근
    • 한국조명전기설비학회:학술대회논문집
    • /
    • 한국조명전기설비학회 2004년도 춘계학술대회 논문집
    • /
    • pp.447-450
    • /
    • 2004
  • This paper presents the basic application idea of superconductor cable for voltage stability limited power system. In bulk power system, the transfer capability of transmission line is often limited by the voltage stability, and superconductor cable could be on of the countermeasure to enhance heat transfer limit as well as voltage stability limit. Steady state voltage stability approach by P-V curve is used to calculate the maximum transfer capability of initial system and superconductor applied system IEEE-14 bus system is used to demonstrate its applicability.

  • PDF

Enhancement of Downward-Facing Saturated Boiling Heat Transfer by the Cold Spray Technique

  • Sohag, Faruk A.;Beck, Faith R.;Mohanta, Lokanath;Cheung, Fan-Bill;Segall, Albert E.;Eden, Timothy J.;Potter, John K.
    • Nuclear Engineering and Technology
    • /
    • 제49권1호
    • /
    • pp.124-133
    • /
    • 2017
  • In-vessel retention by passive external reactor vessel cooling under severe accident conditions is a viable approach for retention of radioactive core melt within the reactor vessel. In this study, a new and versatile coating technique known as "cold spray" that can readily be applied to operating and advanced reactors was developed to form a microporous coating on the outer surface of a simulated reactor lower head. Quenching experiments were performed under simulated in-vessel retention by passive external reactor vessel cooling conditions using test vessels with and without cold spray coatings. Quantitative measurements show that for all angular locations on the vessel outer surface, the local critical heat flux (CHF) values for the coated vessel were consistently higher than the corresponding CHF values for the bare vessel. However, it was also observed for both coated and uncoated surfaces that the local rate of boiling and local CHF limit vary appreciably along the outer surface of the test vessel. Nonetheless, results of this intriguing study clearly show that the use of cold spray coatings could enhance the local CHF limit for downward-facing boiling by > 88%.

점용접에 있어서 온도분포의 변화에 관한 연구 (A study on the transient temperature distribution for spot welds)

  • 왕지석;조용배
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제12권1호
    • /
    • pp.37-45
    • /
    • 1988
  • A calculating method of transient temperature distribution due to spot welding of thin plates is studied in this paper. Considering the contact stress between upper and lower plate and temperature-dependence of specific resistance and elastic limit of base metal, the model of calorific density of heat source was decided. Using 2-dimensional polar coordinates system, the governing equation of heat transfer was developed. The thermal cycles of various points were recorded using C-A thermocouples during spot welding procedure for mild steel plates of 1mm thickness, and those results were compared with the results of calculations presented in this paper.

  • PDF

전압 안정도 제약계통에 대한 고온초전도 케이블 적용효과 (Effects of HTS Cable Applied to the Voltage Stability Limited Power System)

  • 이근준;황시돌
    • 조명전기설비학회논문지
    • /
    • 제18권5호
    • /
    • pp.169-173
    • /
    • 2004
  • 본 논문은 전력계통의 전압 안정도 제약 문제를 해결하는데 고온 초전도 케이블을 적용하기 위한 기법을 제시하였다. 대전력계통의 유효 송전용량은 종종 전압 안정도 제약에 의해 결정된다. 기존의 초전도 케이블 응용 연구는 주로 도심지역의 고밀도 전력 수송 문제를 해결하는 대안으로 연구의 초점을 두어왔지만, 고온 초전도 케이블의 선로정수 개선효과를 이용하면 전압 안정도로 제약된 계통의 송전용량을 증가시킬 수 있어 그 응용 범위가 확대될 수 있다. 전압 안정도에 의한 최대 수송전력을 결정하는 데는 IPLAN에 의한 P-V곡선을 이용하였고, 대체 대상선로는 부하 증가시 무효전력 손실감도가 가장 큰 선로로 하였다. 결과의 타당성을 검증하기 위해 IEEE 14모선 계통을 사용하였으며, 적용결과 Case II는 70[%], Case III에서는 160[%]의 추가 수송 능력 증가를 가져올 수 있었다.