• Title/Summary/Keyword: Heat Release

Search Result 1,068, Processing Time 0.041 seconds

A Study on Heat Release Fluctuation Using Various Hydrocarbon Fuels (다양한 탄화수소 연료를 이용한 열방출 섭동 연구)

  • Hwang, Donghyun;Ahn, Kyubok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.20 no.6
    • /
    • pp.1-10
    • /
    • 2016
  • For the active control of a combustion instability, a change should be made in pressure fluctuation or heat release fluctuation using an acoustic driver or a secondary fuel injection. Also, to determine the location and timing of a secondary fuel injection, one needs to know the distribution of heat release fluctuation under combustion instability. In the present research, the distribution of heat release fluctuation has been experimentally measured by changing hydrocarbon fuel, inlet velocity, equivalence ratio, and acoustic forcing condition. It was confirmed that heat release fluctuation with regards to vortex shedding was significantly affected by the $Damk{\ddot{o}}hler$ number. Under the cases of the $Damk{\ddot{o}}hler$ number above approximately 4 - 5, hot spot region was generated in the leading edge of vortex and cold spot region was in the trailing edge. On the contrary, the cases of the $Damk{\ddot{o}}hler$ number below 3 showed the opposite trend.

Burning Characteristics of Wood-based Materials using Cone Calorimeter and Inclined Panel Tests

  • Park, Joo-Saeng;Lee, Jun-Jae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.30 no.3
    • /
    • pp.18-25
    • /
    • 2002
  • Research to discuss the fire performance of materials requires tools for measuring their burning characteristics and validated fire growth models to predict fire behavior of the materials under specific tire scenarios using the measured properties as input for the models. In this study, burning characteristics such as time to ignition, weight loss rate, flame spread, heat release rate, total heat evolved, and effective heat of combustion for four types of wood-based materials were evaluated using the cone calorimeter and inclined panel tests. Time to ignition was affected by not only surface condition and specific gravity of the tested materials but also the type and magnitude of heat source. Results of weight loss rate, measured by inclined panel tests, indicated that heat transfer from the contacted flame used as the heat source into the inner part of the specimen was inversely proportional to specific gravity of material. Flame spread was closely related with ignition time at the near part of burning zone. Under constant and severe external heat flux, there was little difference in weight loss rate and total heat evolved between four types of wood-based panels. More applied heat flux caused by longer ignition time induced a higher first peak value of heat release rate. Burning characteristics data measured in this study can be used effectively as input for fire growth models to predict the fire behavior of materials under specific fire scenarios.

A Study on the Heat Hazard Assessment of Building Wood (건축용 목재의 열 유해성 평가에 대한 연구)

  • Woo, Tae-Young;Jin, Eui;Chung, Yeong-Jin
    • Fire Science and Engineering
    • /
    • v.32 no.5
    • /
    • pp.6-14
    • /
    • 2018
  • This study was carried out with respect to the heat release rate (HRR) properties of building wood. Heat release characteristics were measured using a cone calorimeter (ISO 5660-1) with four kinds of wood. The time to ignition measured after the combustion in $25kW/m^2$ external heat flux was 35 to 55 s. Time to ignition of both lauan and red pine was marked with the most delayed value in each of 54 s, 55 s. The maximum heat release rate ($HRR_{peak}$) was $156.87{\sim}235.1kW/m^2$, and the risk of early fire was highest in spruce. Total heat release of red pine was obtained in the highest value with $114.2MJ/m^2$. The mean effective heat of combustion of Japanese cedar was 19.1 MJ/kg and the highest among the samples. Fire risk of wood by FPI was orderly increased from lauan ($0.2468s{\cdot}m^2/kW$), red pine ($0.2339s{\cdot}m^2/kW$), spruce ($0.2308s{\cdot}m^2/kW$) to Japanese cedar ($0.2231s{\cdot}m^2/kW$). Fire risk of wood by FGI get increased from lauan ($0.5088kW/m^2{\cdot}s$), red pine ($0.5111kW/m^2{\cdot}s$), Japanese cedar ($2.8522kW/m^2{\cdot}s$) to spruce ($3.0662kW/m^2{\cdot}s$). Therefore, the risk of fire on the heat release characteristics of woods were found that spruce and Japanese cedar showed the high value compared with the other specimens.

A Study on the Heat Release Characteristic of Household Items using LSC(Large Scale Cone Calorimeter) (LSC를 이용한 생활용품의 발열량 특성에 관한 연구)

  • Park, Ju Young;Baek, Chang Sun;Lee, Hae Pyeong;Hong, Yi Pyo
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.3
    • /
    • pp.38-44
    • /
    • 2015
  • For this study, fire tests were performed targeting household items (Sofa, Drawer, Refrigerator, Washing machine) using a large cone calorimeter (Large Scale Cone Calorimeter, LSC). The data were obtained focusing on the fire characteristic of the data when the actual fire occurs. The study results showed the following mean HRR of the household items; drawer 2843 KW, sofa 2939 KW, washing machine 719 KW, refrigerator 2907 KW, and THR is found in sofa 2202 MJ, drawer 1559 MJ, refrigerator 1193 MJ, washing machine 627 MJ. From the result, it could be found that the sofa can cause significant heat generation when the fire occurs, and the flashover tendency was found relatively high in compartment fire. In addition, a weight of the four our household items was reduced sharply in a similar time (20min before and after) degree after ignition. The drawer and sofa which has a high heat release can be considered to speed up the fire spread as their weight decrease rapidly and showed relatively weak to the fire compared to the refrigerator and washing machine.

Experimental Studies on the Stack Cooling Performance Using a $CO_2$ Air Conditioning System in Fuel Cell Vehicles (이산화탄소 에어컨 시스템을 이용한 연료전지 자동차의 스택 냉각성능에 대한 실험적 연구)

  • Kim, Sung-Chul;Kim, Min-Soo;Won, Jong-Phil
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.3
    • /
    • pp.87-93
    • /
    • 2008
  • The $CO_2$ air conditioning system installed in fuel cell vehicles could be used either for stack cooling or for cabin cooling, and thus was used for the stack cooling when additional stack heat release was required over a fixed radiator capacity for high power generation. This study investigated the performance of the stack cooling system using $CO_2$ air conditioner at various operating conditions. Also, the heat releasing effectiveness and mutual interference were analyzed for the stack cooling system using an air conditioner and compared with the conventional radiator cooling system with/without cabin cooling. The heat release of the stack cooling system with the aid of $CO_2$ air conditioner increased up to 36% more than that of the conventional radiator cooling system with cabin cooling. Furthermore, the heat release of the stack cooling system using $CO_2$ air conditioner increased more by 7% than that of the conventional radiator cooling system without cabin cooling.

A Study on the Fire Risk Comparison of Building Flooring Materials by External Heat Flux (건축용 바닥재의 외부복사열에 의한 화재위험성 비교 연구)

  • Park, Youngju;Kim, Youngtak
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.5
    • /
    • pp.20-24
    • /
    • 2017
  • In this study, we have performed the Cone Calorimeter test in accordance with ISO 5660-1 to check the combustion characteristics of building flooring materials. The fire risk of these materials were evaluated by construction code, KFI criteria and standards of flame retardant performance. When samples exposed to external heat flux, all samples consumed a lot of Oxygen for a long time. So heat release from sample burning continued so long. And also all samples produced so much smoke. Even though a few samples were satisfied with only peak heat release rate criteria, all 8 samples were not satisfied with criteria of peak heat release rate and total heat released together. The results of 5 min total heat released were $15.9MJ/m^2{\sim}5.9MJ/m^2$. It menas the results are more than 2~6 times higher than the criteria. The results of 10 min total heat released were $30.1MJ/m^2{\sim}100.8MJ/m^2$. It means the results are more than 3~12 times higher than the criteria. 6 of 8 samples were not satisfied with Dm.corr.(corrected maximum smoke density) criteria. The building flooring materials which we used for this test ignited very fast and the burning continued so long. It means these samples are susceptible to fire.

A Study on the Burning Rate of Puzzle Mats (퍼즐매트의 연소속도에 관한 연구)

  • Park, Hyung-Ju
    • Journal of the Korean Society of Safety
    • /
    • v.23 no.6
    • /
    • pp.84-90
    • /
    • 2008
  • The mass loss rate and heat release rate of puzzle mats were analysed using variable external irradiation level. Five samples of puzzle mat were tested in this study : Type A, B, C, D and E. Type A, B and C are all general grades whereas Type D and E are both Flame retardant grades. Incident heat fluxs of $25kW/m^2$, $35kW/m^2$, $50kW/m^2$ and $70kW/m^2$ were selected for these experiments. All samples were tested in the horizontal orientation and were wrapped in a single layer of aluminum foil. Each sample was nominally 20mm thick and 100mm square. The combustion heat and mass loss rate were carried out from Oxygen bomb calorimeter and mass loss calorimeter according to ISO 5660-1 respectively. Heat release rates were calculated using the equation ${\dot{Q}}=A_f{\dot{m}}"_X{\Delta}H_c=0.75A_f{\dot{m}}"{\Delta}H_c$. where $A_f$ is the horizontal burning area of the sample, $\dot{m}"$ is mass loss rate per unit area, ${\Delta}H_c$ is complete heat of combustion and 0.75 is combustion efficiency.

APPLICATIONS OF A MODEL TO COMPARE AFLAME SPREAD AND BEAT RELEASE PROPERTIES OF INFERIOR FINISH MATERIALS IN A COMPARTMENT

  • Kim, Woon-Hyung;James G. Quintiere
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 1997.11a
    • /
    • pp.193-200
    • /
    • 1997
  • Flame spread and heat release properties and incident heat flux of interior materials subject to an igniter heat flux in a compartment are investigated and compared by using computer model. A comer fire ignition source is maintained for 10 minutes at 100 kw and subsequently increased to 300kw. In executing the model, base-line material properties are selected and one is changed for each run. Also 4 different igniter heat flux conditions and examined. Results are compared for the 12 different materials tested by the ISO Room Comer Test (9705). The time for total energy release rate to reach 1MW is examined. The parameters considered include flame heat flux and thermal inertia, lateral flame spread parameter, heat of combustion and effective heat of gasfication. The model can show the importance of each property in causing fire growth on interior Hnish materials in a compartment. The effect of ignitor heat flux and material property effects were demonstrated by using dimensionless parameters a, b and Tb. Results show that for b greater than about zero, flashover time in the ISO Room-Corner test is principally proportional to ignition time and nothing more.

  • PDF

Effects of Symmetrically Arranged Heat Sources on the Heat Release Performance of Extruded-Type Heat Sinks (열원의 대칭 배열에 따른 압출형 히트싱크의 방열성능 연구)

  • Ku, Min Ye;Shin, Hon Chung;Lee, Gyo Woo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.2
    • /
    • pp.119-126
    • /
    • 2016
  • In this study we investigated the effects of symmetrically arranged heat sources on the heat release performances of extruded-type heat sinks through experiments and thermal fluid simulations. Also, based on the results we suggested a high-efficiency and cost-effective heat sink for a solar inverter cooling system. In this parametric study, the temperatures between heaters on the base plate and the heat release rates were investigated with respect to the arrangements of heat sources and amounts of heat input. Based on the results we believe that the use of both sides of the heat sink is the preferred method for releasing the heat from the heat source to the ambient environment rather than the use of a single side of the heat sink. Also from the results, it is believed that the symmetric arrangement of the heat sources is recommended to achieve a higher rate of heat transfer. From the results of the thermal fluid simulation, it was possible to confirm the qualitative agreement with the experimental results. Finally, quantitative comparison with respect to mass flow rates, heat inputs, and arrangements of the heat source was also performed.

Fire Simulation by Pyrolysis Method of FDS for the Small Cone Calorimeter (ISO 5660) (FDS 열분해 모델을 이용한 콘칼로리미터(ISO 5660) 화재 시뮬레이션)

  • Yang, Sung-Jin;Jang, Jung-Hun;Kang, Chan-Yong
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.206-212
    • /
    • 2009
  • Chemical behaviors of each surface material for interior facilities affect to fire initiation and growth in general fire situation. These chemical behaviors were characterized by thermal properties (Heat release rate, Pyrolysis rate, specific heat, etc) which could be derived from experimental test. Especially, Heat release rate which indicates aspect of fire size is one of the most important property to asses fire hazard and protection needs. The cone calorimeter test (ISO 5660) has recently assumed to a dominant role in bench scale fire testing to obtain the Heat release rate of materials. This value could be calculated by the 'Oxygen Consumption Method' under various producing irradiances to each surface of materials. In this study, Process of the cone calorimeter test was simulated by Pyrolysis model of FDS (Fire Dynamics Simulator by NIST) base on the ISO 5660 international standard. Then, we could estimate the simulation method of FDS in case of single materials through the comparative study with test results.

  • PDF