• Title/Summary/Keyword: Heat Pump System

Search Result 1,123, Processing Time 0.032 seconds

Study on COP Variations with the duration of Ground Source Heat Pump Systems Operation (지열히트펌프의 작동시간 경과에 따른 COP 변화에 대한 연구)

  • Lee, Yonggyu;Baek, Namchoon;Yoon, Eungsang
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.198.2-198.2
    • /
    • 2010
  • In this study, the COP variation with the duration of Ground Source Heat Pump (GSHP) systems operation was analyzed by experiment. This experimental facility was installed in residential house as a back-up device of solar thermal heating system. The capacity of heat pump is 2.5 kW with a vertical bore hole of 150m depth. The COP of GSHP is varied, depending on the ground temperature which is used as a heat source. The ground heat source temperature influencing heating COP is the soil or rock temperature which adjoin with geo-source heat exchanger. This temperature is decreased rapidly according to the operation duration of heat pump. As a result, COP of GSHP is decreased to 3 in one hour of continuous operation time.

  • PDF

Analysis and Verification of High Temperature Heat Pump Dryer using Waste Heat Recovery Type for R245fa Refrigerant (배기가스 배열을 활용한 R245fa 냉매용 고온 히트펌프 건조기의 해석 및 검증)

  • Bae, Kyung-Jin;Cha, Dong-An;Kwon, Oh-Kyung
    • Journal of Power System Engineering
    • /
    • v.20 no.2
    • /
    • pp.73-78
    • /
    • 2016
  • In this study, the performance characteristics of a high temperature heat pump dryer that is able to raise the air temperature up to $80^{\circ}C$ by using waste heat as heat source were investigated numerically. The main components of the heat pump dryer were modeling as a compressor, condenser, evaporator and expansion device, and R245fa was selected as refrigerant. Experiments were also conducted to validate the numerical data. As a result, when the evaporator air inlet temperature increased from $50^{\circ}C$ to $65^{\circ}C$, the numerical results of the hot air temperature at outlet and heat pump COP were about 8~11% and 5~8% higher than that of experimental ones, respectively.

Heat Transfer Analysis of Bearing Unit in Submersible Motor Pump (수중 모터펌프 베어링 유닛 열전달 해석)

  • Yun, Jeong-Eui;Byun, Hyung-Kyun
    • Tribology and Lubricants
    • /
    • v.27 no.4
    • /
    • pp.198-203
    • /
    • 2011
  • The purpose of this paper is to find a proper cooling system of bearing unit in the submersible motor pump to extend a life time. To do this, heat transfer analysis of the submersible motor pump were performed using commercial CFD code ANSYS. In order to obtain the resonable heat transfer simulation results, we first set up mathematical model of heat source in the bearing system, and carried out heat transfer analysis with the model. As a results, new type bearing cap which had several ribs for cooling the bearing was proposed. Finally, through the comparison between experimental results of old and new model pump, we proofed that maximum bearing temperature of new model was about 10% lower than that of old model.

Analysis on the Drying Performance with the Flow Rate of Circulation Air in a Heat Pump Dryer (순환 공기 유량의 변화를 고려한 열펌프 건조기의 성능 해석)

  • Lee, Kong-Hoon;Kim, Oak-Joong;Lee, Sang-Ryoul
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.1
    • /
    • pp.1-8
    • /
    • 2009
  • The simulation of a heat pump dryer has been carried out to figure out the effect of air flow rate on the drying performance represented by MER, SMER, and so on. The simulation includes the analyses of one-stage heat pump cycle and simple drying process using the drying efficiency. The heat pump cycle with Refrigerant 134a has been considered. In the dryer, some of drying air from the drying chamber flows through the heat pump system, the rest of air bypasses the heat pump system. The two air flows joins before the drying chamber inlet. The performance parameters considered in the present study are MER, SMER, the temperature and humidity of drying air. Those parameters are compared for different total air flow rate or bypass air flow rate.

A Study on Cooling Characteristics of Ground Source Heat Pump with Variation of Water Switching and Refrigerant Switching Methods (수절환 및 냉매절환방식에 따른 지열히트펌프의 냉방특성에 관한 연구)

  • Cha, Dong-An;Kwon, Oh-Kyung;Park, Cha-Sik
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.8
    • /
    • pp.605-611
    • /
    • 2012
  • The objective of this study is to investigate the influence of the cooling performance for a water-to-water 10 RT ground source heat pump by using the water switching and refrigerant switching method. The test of water-to-water ground source heat pump was measured by varying the compressor speed, load side inlet temperature, and ground heat source side temperature. The cooling capacity and refrigerant mass flow rate of the heat pump increased with increasing ground heat source temperature. But COP of the heat pump decreased with increasing ground heat source temperature. As a result, the water switching method with counter flow, compared to a refrigerant switching method, improves the cooling capacity and COP by approximately 6~9% in average, respectively.

Theoretical Study on the Performance in a Solar-Geothermal Hybrid R22 Heat Pump During Winter Season according to Heat Source Temperature (열원의 온도변화에 따른 겨울철 태양열-지열 하이브리드 R22 열펌프의 성능에 관한 해석적 연구)

  • Kang, Byun;Cho, Honghyun
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.8 no.4
    • /
    • pp.24-31
    • /
    • 2012
  • The Solar and geothermal energy have many advantage like low cost, non-toxic, and unlimited. But those the have very low energy efficiency. In this study, the theoretical study of performance in a sola-geothermal hybrid heat pump with operating conditions has carried out. As a result, as the solar radiation increases from 1 $MJ/m^2$ to 20 $MJ/m^2$, the heat pump operating time decreases by 19.5% from 18 times to 14.5 times and the heat pump heat decreases by 23%. Besides, the heating COP increases by 21.4% when the evaporator inlet temperature increases from $11^{\circ}C$ to $19^{\circ}C$. By adapting the geothermal system into a solar hybrid R22 heat pump, the system performance and reliability increases significantly for variable operating conditions during winter season.

A Experimental Study on the Ground Source and Rain Water Heat Source Heat Pump System in Apartment (공동주택 적용 지열 및 우수열원을 이용한 히트펌프의 실험적 연구)

  • Ko, Gun-Hyuk;Kim, Ji-Young;Kang, Eun-Chul;Lee, Euy-Joon;Hyun, Myung-Taek
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.833-837
    • /
    • 2008
  • GSHP(Ground Source Heat Pump) has been extensively disseminated due to the recent increasing demand over new and renewable energy. In this study, the operating performance of rain water and ground source heat pump system (RW-GSHP) was compared with GSHP during the heating test. Leaving load temperature(LLT) was $50^{\circ}C$, $53^{\circ}C$, $56^{\circ}C$, respectively and rain water tank temperature(RWT) was $13^{\circ}C$, $15^{\circ}C$, $17^{\circ}C$ in this heating test. The experiment was focused on comparison of the system operating performance depending on leaving load temperature (LLT) and rain water tank temperature (RWT). The results showed that rain water and ground source heat pump system (RW-GSHP) was higher heating performance and COPh than those of GSHP.

  • PDF

An Experimental Study on the Operating Performance of an Air Shift type Heat Pump with Heat Exchanger (전열교환기가 설치된 기류전환형 히트펌프의 동계운전성능에 관한 실험적 연구)

  • Jang, Young-Keun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.8
    • /
    • pp.567-572
    • /
    • 2010
  • Air shift type heat pump is combined heat recovery ventilator and refrigerator, and it is installed an air shifter changing air flow. And so it is an perfect AHU(Air Handling Unit) capable to cooling, heating, ventilation and heat recovery. Therefore, an experimental study has been carried out to investigate the operating performance in winter for this system. An experimental data are room temperature, inlet/outlet temperature of condenser, evaporator and heat exchanger. They have been measured as the variation of outdoor temperature. The results, in case of rising above freezing, the air shift type heat pump system is operated normally, and the heating COP is 3.0~4.2 by varying outdoor temperature from $-3^{\circ}C$ to $15^{\circ}C$.

Performance Characteristics and Economic Assessment of a River Water: Source Heat Pump System (하천수 열원 열펌프 시스템의 성능 특성 및 경제성 평가)

  • Park, Cha-Sik;Jung, Tae-Hun;Park, Hong-Hee;Kim, Yong-Chan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.11
    • /
    • pp.621-628
    • /
    • 2009
  • The objectives of this study are to analyze the performance of a river water-source heat pump and to carry out economic assessment for the heat pump. The COP of the river water-source heat pump was 3-21% higher than that of the air-source heat pump because river water provides stable operating temperature compared with air temperature throughout the year. The economic analysis was carried out by comparing the initial and operating cost of the river water-source heat pump with those of the conventional air-source heat pump. The ratio of the life cycle operating cost to the life cycle cost increased with the increase of building capacity. The payback period was found to be less than 3.5 years when the capacity of the river water-source heat pump was larger than 10 RT.

A Study on Comparative Analysis of Energy Performance of Hybrid Heat Pump Systems Using Ground Heat Source and Water Heat Source (지열원과 수열원을 이용한 하이브리드 히트펌프 시스템의 에너지 성능 비교 분석 연구)

  • Park, Sihun;Kim, Jonghyun;Min, Joonki
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.17 no.4
    • /
    • pp.59-67
    • /
    • 2021
  • In this study, the performance of the single heat source system and the hybrid system was comparatively analyzed. Case 1 is a ground heat source system, and Case 2 is a water heat source system. Case 3, a hybrid system, reduced the capacity of the ground heat source and applied a water heat source as an auxiliary heat source, and Case 4 was composed of a system that applied a water heat source as an auxiliary heat source to the ground heat source system. As a result of the simulation, in case 3, energy consumption was reduced by up to 2.67% compared to ground sources for cooling. In Case 4, COP was improved by up to 10.02% compared to ground sources during cooling, and EST was calculated to be 2.42℃ lower. During heating, 0.83% was improved compared to the water heat source. At this time, the EST was calculated to be 2.25℃ higher than the water heat source.